
Slony-I 2.1.4 Documentation i

Slony-I 2.1.4 Documentation

Slony-I 2.1.4 Documentation ii

Copyright © 2004-2010 The PostgreSQL Global Development Group

Legal Notice

Slony-I is Copyright © 2004-2010 by the PostgreSQL Global Development Group and is distributed under the terms of the license
of the University of California below.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a
written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE
USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Note that UNIX™ is a registered trademark of The Open Group. Windows™ is a registered trademark of Microsoft Corporation
in the United States and other countries. Solaris™ is a registered trademark of Sun Microsystems, Inc. Linux™ is a trademark
of Linus Torvalds. AIX™ is a registered trademark of IBM.

Slony-I 2.1.4 Documentation iii

COLLABORATORS

TITLE :

Slony-I 2.1.4 Documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY Christopher Browne August 15, 2013

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Slony-I 2.1.4 Documentation iv

Contents

1 Preface 1

1.1 Introduction to Slony-I . 1

1.1.1 What Is Slony-I . 1

1.1.2 About This Book . 1

1.2 System Requirements . 1

1.2.1 Requirements for compiling Slony-I . 2

1.2.2 Getting Slony-I Source . 2

1.3 Slony-I Concepts . 2

1.3.1 Cluster . 3

1.3.2 Node . 3

1.3.3 Replication Set . 3

1.3.4 Origin, Providers and Subscribers . 3

1.3.5 slon Daemon . 4

1.3.6 slonik Configuration Processor . 4

1.3.7 Slony-I Path Communications . 4

1.3.8 SSH tunnelling . 5

1.4 Current Limitations . 6

2 Tutorial 7

2.1 Replicating Your First Database . 7

2.1.1 Creating the pgbench User . 8

2.1.2 Preparing the Databases . 8

2.1.3 Configuring the Database For Replication. 9

2.1.3.1 Using slonik Command Directly . 9

2.1.3.2 Using the altperl Scripts . 11

2.2 Starting & Stopping Replication . 12

2.2.1 Deploying Slon Processes . 12

2.2.2 Starting Slon On Unix Systems . 12

2.2.2.1 Invoking slon Directly . 12

2.2.2.2 start_slon.sh . 13

2.2.3 Stopping Slon On a Unix System . 13

2.2.4 Starting Slon On a MS-Windows System . 13

2.2.5 Stopping slon On MS-Windows . 13

Slony-I 2.1.4 Documentation v

3 Administration Tasks 14

3.1 Slony-I Building & Installation . 14

3.1.1 Short Version . 14

3.1.2 Configuration . 14

3.1.3 Example . 17

3.1.4 Build . 17

3.1.5 Installing Slony-I Once Built; . 17

3.1.6 Building on Win32 . 18

3.1.7 Building Documentation: Admin Guide . 18

3.1.8 Installing Slony-I from RPMs . 19

3.1.9 Installing the Slony-I service on Windows™ . 19

3.2 Modifying Things in a Replication Cluster . 19

3.2.1 Adding a Table To Replication . 19

3.2.2 How To Add Columns To a Replicated Table . 20

3.2.3 How to remove replication for a node . 20

3.2.4 Adding a Replication Node . 21

3.2.5 Adding a Cascaded Replica . 22

3.2.6 How do I use Log Shipping? . 22

3.2.7 How To Remove Replication For a Node . 22

3.2.8 Changing a Nodes Provider . 22

3.2.9 Moving The Master From One Node To Another . 23

3.3 Database Schema Changes (DDL) . 23

3.3.1 DDL Changes with Execute Script . 23

3.3.2 Applying DDL Changes Directly . 24

3.4 Doing switchover and failover with Slony-I . 24

3.4.1 Foreword . 24

3.4.2 Controlled Switchover . 25

3.4.3 Failover . 25

3.4.4 Failover With Complex Node Set . 26

3.4.5 Automating FAIL OVER . 28

3.4.6 After Failover, Reconfiguring Former Origin . 28

3.4.7 Planning for Failover . 29

4 Advanced Concepts 30

4.1 Events & Confirmations . 30

4.1.1 SYNC Events . 30

4.1.2 Event Confirmations . 30

4.1.3 Event cleanup . 30

4.1.4 Slonik and Event Confirmations . 31

Slony-I 2.1.4 Documentation vi

4.2 Slony-I Listen Paths . 31

4.2.1 How Listening Can Break . 32

4.2.2 How the Listen Configuration Should Look . 32

4.2.3 Automated Listen Path Generation . 33

4.3 Slony-I Trigger Handling . 33

4.3.1 TRUNCATE in PostgreSQL 8.4+ . 35

4.4 Locking Issues . 36

4.5 Log Shipping - Slony-I with Files . 37

4.5.1 Usage Hints . 38

4.5.2 find-triggers-to-deactivate.sh . 39

4.5.3 slony_logshipper Tool . 39

5 Deployment Considerations 41

5.1 Cluster Monitoring . 41

5.1.1 test_slony_state . 42

5.1.2 Nagios Replication Checks . 43

5.1.3 Monitoring Slony-I using MRTG . 43

5.1.4 Bucardo-related Monitoring . 44

5.1.5 search-logs.sh . 44

5.1.6 Building MediaWiki Cluster Summary . 44

5.1.7 Analysis of a SYNC . 45

5.2 Component Monitoring . 46

5.2.1 Looking at pg_stat_activity view . 46

5.2.2 Looking at sl_components view . 46

5.2.3 Notes On Interpreting Component Activity . 47

5.3 Partitioning Support . 47

5.3.1 Support for Dynamic Partition Addition . 48

5.4 Slony-I Upgrade . 48

5.4.1 Incompatibilties between 2.0 and 2.1 . 49

5.4.1.1 Automatic Wait For . 49

5.4.1.2 SNMP Support . 49

5.4.2 Incompatibilities between 1.2 and 2.0 . 49

5.4.2.1 TABLE ADD KEY issue in Slony-I 2.0 . 49

5.4.2.2 New Trigger Handling in Slony-I Version 2 . 50

5.4.2.3 SUBSCRIBE SET goes to the origin . 50

5.4.2.4 WAIT FOR EVENT requires WAIT ON . 50

5.4.3 Upgrading to Slony-I version 2.1 from version 2.0 . 50

5.4.4 Upgrading to Slony-I version 2.1 from version 1.2 or earlier . 50

5.5 Log Analysis . 51

Slony-I 2.1.4 Documentation vii

5.5.1 CONFIG notices . 52

5.5.2 INFO notices . 52

5.5.3 DEBUG Notices . 52

5.5.4 Thread name . 52

5.5.5 How to read Slony-I logs . 52

5.5.6 Log Messages and Implications . 53

5.5.6.1 Log Messages Associated with Log Shipping . 53

5.5.6.2 Log Messages - DDL scripts . 54

5.5.6.3 Threading Issues . 55

5.5.6.4 Log Entries At Subscription Time . 55

5.5.6.5 Log Entries Associated with MERGE SET . 58

5.5.6.6 Log Entries Associated With Normal SYNC activity . 59

5.5.6.7 Log Entries - Adding Objects to Sets . 60

5.5.6.8 Logging When Moving Objects Between Sets . 62

5.5.6.9 Issues with Dropping Objects . 62

5.5.6.10 Issues with MOVE SET, FAILOVER, DROP NODE . 63

5.5.6.11 Log Switching . 63

5.5.6.12 Miscellanea . 64

5.6 Performance Considerations . 65

5.6.1 Vacuum Concerns . 65

5.6.2 Log Switching . 65

5.6.3 Long Running Transactions . 65

5.7 Security Considerations . 66

5.7.1 Minimum Privileges . 66

5.7.2 Lowering Authority Usage from Superuser . 66

5.7.3 Handling Database Authentication (Passwords) . 67

5.7.4 Other Good Security Practices . 67

6 Additional Utilities 68

6.1 Slony-I Administration Scripts . 68

6.1.1 altperl Scripts . 68

6.1.1.1 Support for Multiple Clusters . 68

6.1.1.2 Set configuration - cluster.set1, cluster.set2 . 69

6.1.1.3 slonik_build_env . 69

6.1.1.4 slonik_print_preamble . 69

6.1.1.5 slonik_create_set . 69

6.1.1.6 slonik_drop_node . 69

6.1.1.7 slonik_drop_set . 69

6.1.1.8 slonik_drop_table . 70

Slony-I 2.1.4 Documentation viii

6.1.1.9 slonik_execute_script . 70

6.1.1.10 slonik_failover . 70

6.1.1.11 slonik_init_cluster . 70

6.1.1.12 slonik_merge_sets . 70

6.1.1.13 slonik_move_set . 70

6.1.1.14 replication_test . 70

6.1.1.15 slonik_restart_node . 70

6.1.1.16 slonik_restart_nodes . 70

6.1.1.17 slony_show_configuration . 70

6.1.1.18 slon_kill . 70

6.1.1.19 slon_start . 70

6.1.1.20 slon_watchdog . 71

6.1.1.21 slon_watchdog2 . 71

6.1.1.22 slonik_store_node . 71

6.1.1.23 slonik_subscribe_set . 71

6.1.1.24 slonik_uninstall_nodes . 71

6.1.1.25 slonik_unsubscribe_set . 71

6.1.1.26 slonik_update_nodes . 71

6.1.2 mkslonconf.sh . 71

6.1.3 start_slon.sh . 72

6.1.4 launch_clusters.sh . 73

6.1.5 slony1_extract_schema.sh . 73

6.1.6 slony-cluster-analysis . 74

6.1.7 Generating slonik scripts using configure-replication.sh 74

6.1.7.1 Global Values . 74

6.1.7.2 Node-Specific Values . 75

6.1.7.3 Resulting slonik scripts . 75

6.1.8 slon.in-profiles . 76

6.1.9 duplicate-node.sh . 76

6.1.10 slonikconfdump.sh . 77

6.1.11 Parallel to Watchdog: generate_syncs.sh . 78

6.2 Slony-I Watchdog . 78

6.2.1 Watchdogs: Keeping Slons Running . 78

6.3 Testing Slony-I State . 78

6.3.1 test_slony_state . 78

6.3.2 Replication Test Scripts . 79

6.3.3 Other Replication Tests . 79

6.4 Log Files . 80

6.5 mkservice . 80

Slony-I 2.1.4 Documentation ix

6.5.1 slon-mkservice.sh . 80

6.5.2 logrep-mkservice.sh . 80

6.6 Slony-I Test Suites . 81

6.7 Clustertest Test Framework . 81

6.7.1 Introduction and Overview . 81

6.7.2 DISORDER - DIStributed ORDER test . 83

6.7.2.1 Configuring DISORDER . 84

6.7.3 Regression Tests . 84

6.7.3.1 Configuring Regression Tests . 84

6.8 Slony-I Test Bed Framework . 85

I Reference 88

7 slon 89

7.1 Run-time Configuration . 92

7.2 Logging . 92

7.3 Connection settings . 93

7.4 Archive Logging Options . 93

7.5 Event Tuning . 93

8 slonik 96

8.1 Slonik Command Summary . 97

8.2 General outline . 99

8.2.1 Commands . 99

8.2.2 Comments . 99

8.2.3 Command groups . 99

9 Slonik Meta Commands 100

9.1 SLONIK INCLUDE . 100

9.2 SLONIK DEFINE . 100

10 Slonik Preamble Commands 102

10.1 SLONIK CLUSTER NAME . 102

10.2 SLONIK ADMIN CONNINFO . 102

11 Configuration and Action commmands 104

11.1 SLONIK ECHO . 104

11.2 SLONIK DATE . 104

11.3 SLONIK EXIT . 105

11.4 SLONIK INIT CLUSTER . 105

11.5 SLONIK STORE NODE . 106

Slony-I 2.1.4 Documentation x

11.6 SLONIK DROP NODE . 107

11.7 SLONIK UNINSTALL NODE . 108

11.8 SLONIK RESTART NODE . 109

11.9 SLONIK STORE PATH . 110

11.10SLONIK DROP PATH . 111

11.11SLONIK STORE LISTEN . 112

11.12SLONIK DROP LISTEN . 113

11.13SLONIK TABLE ADD KEY . 114

11.14SLONIK TABLE DROP KEY . 114

11.15SLONIK CREATE SET . 114

11.16SLONIK DROP SET . 115

11.17SLONIK MERGE SET . 116

11.18SLONIK SET ADD TABLE . 117

11.19SLONIK SET ADD SEQUENCE . 119

11.20SLONIK SET DROP TABLE . 121

11.21SLONIK SET DROP SEQUENCE . 121

11.22SLONIK SET MOVE TABLE . 122

11.23SLONIK SET MOVE SEQUENCE . 123

11.24SLONIK STORE TRIGGER . 124

11.25SLONIK DROP TRIGGER . 124

11.26SLONIK SUBSCRIBE SET . 125

11.27SLONIK UNSUBSCRIBE SET . 127

11.28SLONIK LOCK SET . 128

11.29SLONIK UNLOCK SET . 129

11.30SLONIK MOVE SET . 130

11.31SLONIK FAILOVER . 131

11.32SLONIK EXECUTE SCRIPT . 132

11.33SLONIK UPDATE FUNCTIONS . 134

11.34SLONIK WAIT FOR EVENT . 134

11.35SLONIK REPAIR CONFIG . 136

11.36SLONIK SYNC . 136

11.37SLONIK SLEEP . 137

11.38SLONIK CLONE PREPARE . 138

11.39SLONIK CLONE FINISH . 138

Slony-I 2.1.4 Documentation xi

12 Appendix 140

12.1 Frequently Asked Questions . 140

12.2 Release Checklist . 161

12.3 Using Slonik . 163

12.4 Embedding Slonik in Shell Scripts . 164

12.5 More Slony-I Help . 166

12.5.1 Slony-I Website . 166

12.5.2 Mailing Lists . 166

12.5.3 Other Sources . 166

13 Schema schemadoc 167

13.1 Table: sl_archive_counter . 167

13.2 Table: sl_components . 167

13.3 Table: sl_config_lock . 168

13.4 Table: sl_confirm . 168

13.5 Table: sl_event . 168

13.6 Table: sl_event_lock . 169

13.7 Table: sl_listen . 169

13.8 Table: sl_log_1 . 170

13.9 Table: sl_log_2 . 170

13.10 Table: sl_node . 171

13.11 Table: sl_nodelock . 171

13.12 Table: sl_path . 171

13.13 Table: sl_registry . 172

13.14 View: sl_seqlastvalue . 172

13.15 Table: sl_seqlog . 173

13.16 Table: sl_sequence . 174

13.17 Table: sl_set . 174

13.18 Table: sl_setsync . 175

13.19 Table: sl_subscribe . 175

13.20 Table: sl_table . 175

13.21 add_empty_table_to_replication(p_comment integer, p_idxname integer, p_tabname text, p_nspname text, p_tab_id
text, p_set_id text) . 176

13.22 add_missing_table_field(p_type text, p_field text, p_table text, p_namespace text) 177

13.23 addpartiallogindices() . 178

13.24 altertableaddtriggers(p_tab_id integer) . 179

13.25 altertableconfiguretriggers(p_tab_id integer) . 180

13.26 altertabledroptriggers(p_tab_id integer) . 182

13.27 checkmoduleversion() . 183

Slony-I 2.1.4 Documentation xii

13.28 cleanupevent(p_interval interval) . 183

13.29 cleanupnodelock() . 185

13.30 clonenodefinish(p_no_provider integer, p_no_id integer) . 185

13.31 clonenodeprepare(p_no_comment integer, p_no_provider integer, p_no_id text) 186

13.32 clonenodeprepare_int(p_no_comment integer, p_no_provider integer, p_no_id text) 186

13.33 component_state(i_eventtype text, i_event integer, i_starttime integer, i_activity integer, i_conn_pid text, i_node
timestamp with time zone, i_pid bigint, i_actor text) . 187

13.34 copyfields(p_tab_id integer) . 187

13.35 createevent(ev_data1 name, p_event_type text, p_cluster_name text) . 188

13.36 createevent(ev_data2 name, ev_data1 text, p_event_type text, p_cluster_name text) 188

13.37 createevent(ev_data3 name, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text) 188

13.38 createevent(ev_data4 name, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text) 189

13.39 createevent(ev_data5 name, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name
text) . 189

13.40 createevent(ev_data6 name, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type
text, p_cluster_name text) . 189

13.41 createevent(ev_data7 name, ev_data6 text, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1
text, p_event_type text, p_cluster_name text) . 189

13.42 createevent(ev_data8 name, ev_data7 text, ev_data6 text, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2
text, ev_data1 text, p_event_type text, p_cluster_name text) . 189

13.43 createevent(p_event_type name, p_cluster_name text) . 190

13.44 ddlscript_complete(p_only_on_node integer, p_script text, p_set_id integer) 190

13.45 ddlscript_complete_int(p_only_on_node integer, p_set_id integer) . 190

13.46 ddlscript_prepare(p_only_on_node integer, p_set_id integer) . 191

13.47 ddlscript_prepare_int(p_only_on_node integer, p_set_id integer) . 191

13.48 decode_tgargs(bytea) . 192

13.49 deny_truncate() . 192

13.50 denyaccess() . 192

13.51 determineattkindunique(p_idx_name text, p_tab_fqname name) . 193

13.52 determineidxnameunique(p_idx_name text, p_tab_fqname name) . 194

13.53 disable_indexes_on_table(i_oid oid) . 196

13.54 disablenode(p_no_id integer) . 196

13.55 disablenode_int(p_no_id integer) . 196

13.56 droplisten(p_li_receiver integer, p_li_provider integer, p_li_origin integer) . 196

13.57 droplisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin integer) 197

13.58 dropnode(p_no_id integer) . 197

13.59 dropnode_int(p_no_id integer) . 198

13.60 droppath(p_pa_client integer, p_pa_server integer) . 199

13.61 droppath_int(p_pa_client integer, p_pa_server integer) . 199

13.62 dropset(p_set_id integer) . 200

Slony-I 2.1.4 Documentation xiii

13.63 dropset_int(p_set_id integer) . 201

13.64 enable_indexes_on_table(i_oid oid) . 201

13.65 enablenode(p_no_id integer) . 202

13.66 enablenode_int(p_no_id integer) . 202

13.67 enablesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer) 203

13.68 enablesubscription_int(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer) 204

13.69 failednode(p_backup_node integer, p_failed_node integer) . 204

13.70 failednode2(p_ev_seqfake integer, p_ev_seqno integer, p_set_id integer, p_backup_node bigint, p_failed_node
bigint) . 208

13.71 failoverset_int(p_wait_seqno integer, p_set_id integer, p_backup_node integer, p_failed_node bigint) 208

13.72 finishtableaftercopy(p_tab_id integer) . 210

13.73 forwardconfirm(p_con_timestamp integer, p_con_seqno integer, p_con_received bigint, p_con_origin timestamp
without time zone) . 211

13.74 generate_sync_event(p_interval interval) . 211

13.75 getlocalnodeid(p_cluster name) . 211

13.76 getmoduleversion() . 212

13.77 initializelocalnode(p_comment integer, p_local_node_id text) . 212

13.78 is_node_reachable(receiver_node_id integer, origin_node_id integer) . 212

13.79 issubscriptioninprogress(p_add_id integer) . 213

13.80 killbackend(p_signame integer, p_pid text) . 213

13.81 lockedset() . 213

13.82 lockset(p_set_id integer) . 214

13.83 log_truncate() . 215

13.84 logswitch_finish() . 215

13.85 logswitch_start() . 218

13.86 logtrigger() . 218

13.87 mergeset(p_add_id integer, p_set_id integer) . 218

13.88 mergeset_int(p_add_id integer, p_set_id integer) . 220

13.89 moveset(p_new_origin integer, p_set_id integer) . 220

13.90 moveset_int(p_wait_seqno integer, p_new_origin integer, p_old_origin integer, p_set_id bigint) 222

13.91 preparetableforcopy(p_tab_id integer) . 224

13.92 rebuildlistenentries() . 225

13.93 recreate_log_trigger(p_tab_attkind text, p_tab_id oid, p_fq_table_name text) 227

13.94 registernodeconnection(p_nodeid integer) . 227

13.95 registry_get_int4(p_default text, p_key integer) . 228

13.96 registry_get_text(p_default text, p_key text) . 228

13.97 registry_get_timestamp(p_default text, p_key timestamp with time zone) . 228

13.98 registry_set_int4(p_value text, p_key integer) . 229

13.99 registry_set_text(p_value text, p_key text) . 229

Slony-I 2.1.4 Documentation xiv

13.100registry_set_timestamp(p_value text, p_key timestamp with time zone) . 230

13.101repair_log_triggers(only_locked boolean) . 230

13.102replicate_partition(p_comment integer, p_idxname text, p_tabname text, p_nspname text, p_tab_id text) 231

13.103resetsession() . 232

13.104reshapesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer) 232

13.105seqtrack(p_seqval integer, p_seqid bigint) . 232

13.106sequencelastvalue(p_seqname text) . 232

13.107sequencesetvalue(p_last_value integer, p_ev_seqno integer, p_seq_origin bigint, p_seq_id bigint) 233

13.108setaddsequence(p_seq_comment integer, p_fqname integer, p_seq_id text, p_set_id text) 233

13.109setaddsequence_int(p_seq_comment integer, p_fqname integer, p_seq_id text, p_set_id text) 234

13.110setaddtable(p_tab_comment integer, p_tab_idxname integer, p_fqname text, p_tab_id name, p_set_id text) . . . 236

13.111setaddtable_int(p_tab_comment integer, p_tab_idxname integer, p_fqname text, p_tab_id name, p_set_id text) . 236

13.112setdropsequence(p_seq_id integer) . 238

13.113setdropsequence_int(p_seq_id integer) . 239

13.114setdroptable(p_tab_id integer) . 240

13.115setdroptable_int(p_tab_id integer) . 241

13.116setmovesequence(p_new_set_id integer, p_seq_id integer) . 242

13.117setmovesequence_int(p_new_set_id integer, p_seq_id integer) . 243

13.118setmovetable(p_new_set_id integer, p_tab_id integer) . 244

13.119setmovetable_int(p_new_set_id integer, p_tab_id integer) . 245

13.120slon_node_health_check() . 245

13.121slon_quote_brute(p_tab_fqname text) . 246

13.122slon_quote_input(p_tab_fqname text) . 246

13.123slonyversion() . 247

13.124slonyversionmajor() . 247

13.125slonyversionminor() . 248

13.126slonyversionpatchlevel() . 248

13.127store_application_name(i_name text) . 248

13.128storelisten(p_receiver integer, p_provider integer, p_origin integer) . 248

13.129storelisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin integer) 249

13.130storenode(p_no_comment integer, p_no_id text) . 249

13.131storenode_int(p_no_comment integer, p_no_id text) . 250

13.132storepath(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text, p_pa_server integer) 250

13.133storepath_int(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text, p_pa_server integer) 251

13.134storeset(p_set_comment integer, p_set_id text) . 252

13.135storeset_int(p_set_comment integer, p_set_origin integer, p_set_id text) . 252

13.136subscribeset(p_omit_copy integer, p_sub_forward integer, p_sub_receiver integer, p_sub_provider boolean, p_sub_set
boolean) . 253

Slony-I 2.1.4 Documentation xv

13.137subscribeset_int(p_omit_copy integer, p_sub_forward integer, p_sub_receiver integer, p_sub_provider boolean,
p_sub_set boolean) . 254

13.138tablestovacuum() . 256

13.139terminatenodeconnections(p_failed_node integer) . 256

13.140uninstallnode() . 257

13.141unlockset(p_set_id integer) . 257

13.142unsubscribeset(p_sub_receiver integer, p_sub_set integer) . 258

13.143unsubscribeset_int(p_sub_receiver integer, p_sub_set integer) . 259

13.144updaterelname(p_only_on_node integer, p_set_id integer) . 260

13.145updatereloid(p_only_on_node integer, p_set_id integer) . 261

13.146upgradeschema(p_old text) . 262

Slony-I 2.1.4 Documentation xvi

List of Figures

13.1 Definition of view sl_seqlastvalue . 173

Slony-I 2.1.4 Documentation xvii

List of Tables

4.1 Trigger Behaviour . 34

Slony-I 2.1.4 Documentation 1 / 263

Chapter 1

Preface

1.1 Introduction to Slony-I

1.1.1 What Is Slony-I

Slony-I is a “master to multiple slaves” replication system for PostgreSQL supporting cascading and slave promotion. Key
features of Slony-I include:

• Slony-I can replicate data between different PostgreSQL major versions

• Slony-I can replicate data between different hardware or operating systems

• Slony-I allows you to only replicate some of the tables to slave

• Slony-I allows you to replicate some tables to one slave and other tables to another slave

• Slony-I allows different database servers to be the origin(master) for different tables

1.1.2 About This Book

This book is intended as an administration guide and reference for Slony-I version 2.1.4 If you are using a different version of
Slony-I then you should refer to the administration guide for that version.

1.2 System Requirements

To run Slony-I you will need

• PostgreSQL 8.3 or above (this version of Slony-I is known to work with 8.3.x, 8.4.x , 9.0.x, 9.1.x and 9.2.x). Earlier versions
of PostgreSQL require Slony-I 1.2.x

• The Slony-I binary files either compiled from source or from a binary package

The following are recommended for running Slony-I

• A method of keeping the clocks on your replicas reasonably in sync such as NTP

Also, it is preferable to use an consistent, stable time zone such as UTC or GMT.

Users have run into problems with slon(1) functioning properly when their system uses a time zone that PostgreSQL was
unable to recognize such as CUT0 or WST. It is necessary that you use a timezone that PostgreSQL can recognize correctly. It
is furthermore preferable to use a time zone where times do not have discontinuities due to Daylight Savings Time.

Most of Slony-I does not directly reference or use times, but if clocks are out of sync between servers running Slony-I compo-
nents, confusion may be expected in the following places:

Slony-I 2.1.4 Documentation 2 / 263

– The monitoring view sl_status uses timestamps sourced from multiple servers.

– Monitoring table sl_components captures timestamps based on the clock time on the host running slon(1).

– slon(1) logs are likely to contain timestamps.

Figuring out what is going on is likely to be made rather confusing if the database servers and servers where slon(1) instances
run do not agree on what time it its.

• A reliable network between nodes

slon(1) processes should run in the same “network context” as the node that each is responsible for managing so that the
connection to that node is a “local” one. Do not run such links across a WAN. Thus, if you have nodes in London and nodes
in New York, the slon(1)s managing London nodes should run in London, and the slon(1)s managing New York nodes should
run in New York.

A WAN outage (or flakiness of the WAN in general) can leave database connections “zombied”, and typical TCP/IP behaviour
will allow those connections to persist, preventing a slon restart for around two hours.

It is not difficult to remedy this; you need only kill SIGINT the offending backend connection. But by running the slon(1)
locally, you will generally not be vulnerable to this condition.

• All of your databases should be using the same database encoding. (ie LATIN1 or UTF8). Replicating from a database in one
encoding to a database with a different encoding might lead to replication errors.

1.2.1 Requirements for compiling Slony-I

In order to compile Slony-I, you need to have the following tools:

• GNU make. Other make programs will not work. GNU make is often installed under the name gmake; this document will
therefore always refer to it by that name. (On Linux-based systems GNU make is typically the default make, and is called
make)

• You need an ISO/ANSI C compiler. Recent versions of GCC work.

• You also need a recent version of PostgreSQL including the server headers. You must have PostgreSQL version 8.3 or newer
to be able to build and use Slony-I.

• This documentation is written in SGML using DocBook , and may be processed into numerous formats including HTML, RTF,
and PDF using tools in the DocBook Open Repository along with OpenJade.

• On Windows™ you will also need the same MinGW/Msys Toolset used to build PostgreSQL 8.3 and above. In addition you
will need to install pthreads-win32 2.x.

1.2.2 Getting Slony-I Source

You can get the Slony-I source from http://main.slony.info/downloads/

1.3 Slony-I Concepts

In order to set up a set of Slony-I replicas, it is necessary to understand the following major abstractions that it uses:

• Cluster

• Node

• Replication Set

• Origin, Providers and Subscribers

• slon daemons

http://docbook.com/
http://docbook.sourceforge.net/
http://openjade.sourceforge.net/
http://www.postgresql.org/docs/faqs.FAQ_MINGW.html
http://sourceware.org/pthreads-win32/
http://main.slony.info/downloads/

Slony-I 2.1.4 Documentation 3 / 263

• slonik configuration processor

It is also worth knowing the meanings of certain Russian words:

• slon is Russian for “elephant”

• slony is the plural of slon, and therefore refers to a group of elephants

• slonik is Russian for “little elephant”

The use of these terms in Slony-I is a “tip of the hat” to Vadim Mikheev, who was responsible for the rserv prototype which
inspired some of the algorithms used in Slony-I.

1.3.1 Cluster

In Slony-I terms, a “cluster” is a named set of PostgreSQL database instances; replication takes place between those databases.

The cluster name is specified in each and every Slonik script via the directive:

cluster name = something;

If the Cluster name is something, then Slony-I will create, in each database instance in the cluster, the namespace/schema
_something.

1.3.2 Node

A Slony-I Node is a named PostgreSQL database that will be participating in replication.

It is defined, near the beginning of each Slonik script, using the directive:

NODE 1 ADMIN CONNINFO = ’dbname=testdb host=server1 user=slony’;

The SLONIK ADMIN CONNINFO(7) information indicates database connection information that will ultimately be passed to
the PQconnectdb() libpq function.

Thus, a Slony-I cluster consists of:

• A cluster name

• A set of Slony-I nodes, each of which has a namespace based on that cluster name

1.3.3 Replication Set

A replication set is defined as a set of tables and sequences that are to be replicated between nodes in a Slony-I cluster.

You may have several sets, and the “flow” of replication does not need to be identical between those sets.

1.3.4 Origin, Providers and Subscribers

Each replication set has some origin node, which is the only place where user applications are permitted to modify data in the
tables that are being replicated. This might also be termed the “master provider”; it is the main place from which data is provided.

Other nodes in the cluster subscribe to the replication set, indicating that they want to receive the data.

The origin node will never be considered a “subscriber.” (Ignoring the case where the cluster is reshaped, and the origin is
expressly shifted to another node.) But Slony-I supports the notion of cascaded subscriptions, that is, a node that is subscribed to
some set may also behave as a “provider” to other nodes in the cluster for that replication set.

Slony-I 2.1.4 Documentation 4 / 263

1.3.5 slon Daemon

For each node in the cluster, there will be a slon(1) process to manage replication activity for that node.

slon(1) is a program implemented in C that processes replication events. There are two main sorts of events:

• Configuration events

These normally occur when a slonik(1) script is run, and submit updates to the configuration of the cluster.

• SYNC events

Updates to the tables that are replicated are grouped together into SYNCs; these groups of transactions are applied together to
the subscriber nodes.

1.3.6 slonik Configuration Processor

The slonik(1) command processor processes scripts in a “little language” that are used to submit events to update the configuration
of a Slony-I cluster. This includes such things as adding and removing nodes, modifying communications paths, adding or
removing subscriptions.

1.3.7 Slony-I Path Communications

Slony-I uses PostgreSQL DSNs in three contexts to establish access to databases:

• SLONIK ADMIN CONNINFO(7) - controlling how a slonik(1) script accesses the various nodes.

These connections are the ones that go from your “administrative workstation” to all of the nodes in a Slony-I cluster.

It is vital that you have connections from the central location where you run slonik(1) to each and every node in the network.
These connections are only used briefly, to submit the few SQL requests required to control the administration of the cluster.

Since these communications paths are only used briefly, it may be quite reasonable to “hack together” temporary connections
using SSH tunnelling.

• The slon(1) DSN parameter.

The DSN parameter passed to each slon(1) indicates what network path should be used to get from the slon(1) process to the
database that it manages.

• SLONIK STORE PATH(7) - controlling how slon(1) daemons communicate with remote nodes. These paths are stored in
sl_path.

You forcibly need to have a path between each subscriber node and its provider; other paths are optional, and will not be used
unless a listen path in sl_listen. is needed that uses that particular path.

The distinctions and possible complexities of paths are not normally an issue for people with simple networks where all the hosts
can see one another via a comparatively “global” set of network addresses. In contrast, it matters rather a lot for those with
complex firewall configurations, nodes at multiple locations, and the issue where nodes may not be able to all talk to one another
via a uniform set of network addresses.

Slony-I 2.1.4 Documentation 5 / 263

Consider the attached diagram, which describes a set of six nodes

• DB1 and DB2 are databases residing in a secure “database layer,” firewalled against outside access except from specifically
controlled locations.

Let’s suppose that DB1 is the origin node for the replication system.

• DB3 resides in a “DMZ” at the same site; it is intended to be used as a Slony-I “provider” for remote locations.

• DB4 is a counterpart to DB3 in a “DMZ” at a secondary/failover site. Its job, in the present configuration, is to “feed” servers
in the secure database layers at the secondary site.

• DB5 and DB6 are counterparts to DB1 and DB2, but are, at present, configured as subscribers.

Supposing disaster were to strike at the “primary” site, the secondary site would be well-equipped to take over servicing the
applications that use this data.

• The symmetry of the configuration means that if you had two transactional applications needing protection from failure, it
would be straightforward to have additional replication sets so that each site is normally “primary” for one application, and
where destruction of one site could be addressed by consolidating services at the remaining site.

1.3.8 SSH tunnelling

If a direct connection to PostgreSQL can not be established because of a firewall then you can establish an ssh tunnel that Slony-I
can operate over.

SSH tunnels can be configured by passing the w to SSH. This enables forwarding PostgreSQL traffic where a local port is
forwarded across a connection, encrypted and compressed, using SSH

Slony-I 2.1.4 Documentation 6 / 263

See the ssh documentation for details on how to configure and use SSH tunnels.

1.4 Current Limitations

Slony-I does not automatically replicate

• Changes to large objects (BLOBS)

• Changes made by DDL commands

• Changes to users and roles

The main reason for these limitations is that Slony-I collects updates using triggers, and neither schema changes nor large object
operations are captured by triggers

There is a capability for Slony-I to propagate notably DDL changes if you submit them as scripts via the slonik SLONIK
EXECUTE SCRIPT(7) operation. That is not handled “automatically;” you, as a database administrator, will have to construct
an SQL DDL script and submit it, via SLONIK EXECUTE SCRIPT(7).

If you have these sorts of requirements, it may be worth exploring the use of PostgreSQL 8.0+ PITR (Point In Time Recovery),
where WAL logs are replicated to remote nodes.

Slony-I 2.1.4 Documentation 7 / 263

Chapter 2

Tutorial

2.1 Replicating Your First Database

In this example, we will be replicating a brand new pgbench database. The mechanics of replicating an existing database are
covered here, however we recommend that you learn how Slony-I functions by using a fresh new non-production database.

Note that pgbench is a “benchmark” tool that is in the PostgreSQL set of contrib tools. If you build PostgreSQL from source,
you can readily head to contrib/pgbench and do a make install to build and install it; you may discover that included in
packaged binary PostgreSQL installations.

Note
pgbench creates tables with a slightly different name in PostgreSQL 8.3 than it does in later versions. If you are using this
tutorial with PostgreSQL 8.3 you should remove the ’pgbench_’ prefix from all of the table names listed below

The Slony-I replication engine is trigger-based, allowing us to replicate databases (or portions thereof) running under the same
postmaster.

This example will show how to replicate the pgbench database running on localhost (master) to the pgbench slave database also
running on localhost (slave). We make a couple of assumptions about your PostgreSQL configuration:

• You have tcpip_socket=true in your postgresql.conf;

Note
This is no longer needed for PostgreSQL 8.0 and later versions.

• You have enabled access in your cluster(s) via pg_hba.conf

The REPLICATIONUSER is commonly set up to be a PostgreSQL superuser, perhaps an existing one such as postgres,
pgsql, or one created for this purpose such as slony or replication. Traditionally, people have used a database superuser
for this, but that is not necessary as discussed Section 5.7.2. If you set up a non-superuser user for this, there is more of a
configuration burden in granting the specifically-required permissions.

You should also set the following shell variables:

• CLUSTERNAME=slony_example

• MASTERDBNAME=pgbench

• SLAVEDBNAME=pgbenchslave

Slony-I 2.1.4 Documentation 8 / 263

• MASTERHOST=localhost

• SLAVEHOST=localhost

• REPLICATIONUSER=pgsql

• PGBENCHUSER=pgbench

Here are a couple of examples for setting variables in common shells:

• bash, sh, ksh export CLUSTERNAME=slony_example

• (t)csh: setenv CLUSTERNAME slony_example

Warning
If you’re changing these variables to use different hosts for MASTERHOST and SLAVEHOST, be sure not to use
localhost for either of them. This will result in an error similar to the following:
ERROR remoteListenThread_1: db_getLocalNodeId() returned 2 - wrong database?

2.1.1 Creating the pgbench User

createuser -SRD $PGBENCHUSER

2.1.2 Preparing the Databases

createdb -O $PGBENCHUSER -h $MASTERHOST $MASTERDBNAME
createdb -O $PGBENCHUSER -h $SLAVEHOST $SLAVEDBNAME
pgbench -i -s 1 -U $PGBENCHUSER -h $MASTERHOST $MASTERDBNAME

One of the tables created by pgbench, pgbench_history, does not have a primary key. Slony-I requires that there is a suitable
candidate primary key.

The following SQL requests will establish a proper primary key on this table:

psql -U $PGBENCHUSER -h $HOST1 -d $MASTERDBNAME -c "begin; alter table
pgbench_history add column id serial; update history set id =
nextval(’pgbench_history_id_seq’); alter table pgbench_history add primary key(id);
commit;"

Because Slony-I depends on the databases having the pl/pgSQL procedural language installed, we better install it now. It is
possible that you have installed pl/pgSQL into the template1 database in which case you can skip this step because it’s already
installed into the $MASTERDBNAME.

createlang -h $MASTERHOST plpgsql $MASTERDBNAME

Slony-I does not automatically copy table definitions from a master when a slave subscribes to it, so we need to import this data.
We do this with pg_dump.

pg_dump -s -U $REPLICATIONUSER -h $MASTERHOST $MASTERDBNAME | psql -U $REPLICATIONUSER -h ←↩
$SLAVEHOST $SLAVEDBNAME

To illustrate how Slony-I allows for on the fly replication subscription, let’s start up pgbench. If you run the pgbench application
in the foreground of a separate terminal window, you can stop and restart it with different parameters at any time. You’ll need to
re-export the variables again so they are available in this session as well.

The typical command to run pgbench would look like:

pgbench -s 1 -c 5 -t 1000 -U $PGBENCHUSER -h $MASTERHOST $MASTERDBNAME

This will run pgbench with 5 concurrent clients each processing 1000 transactions against the pgbench database running on
localhost as the pgbench user.

Slony-I 2.1.4 Documentation 9 / 263

2.1.3 Configuring the Database For Replication.

Creating the configuration tables, stored procedures, triggers and configuration is all done through the slonik(1) tool. It is a
specialized scripting aid that mostly calls stored procedures in the master/slave (node) databases.

The example that follows uses slonik(1) directly (or embedded directly into scripts). This is not necessarily the most pleasant
way to get started; there exist tools for building slonik(1) scripts under the tools directory, including:

• Section 6.1.1 - a set of Perl scripts that build slonik(1) scripts based on a single slon_tools.conf file.

• Section 6.1.2 - a shell script (e.g. - works with Bash) which, based either on self-contained configuration or on shell environ-
ment variables, generates a set of slonik(1) scripts to configure a whole cluster.

2.1.3.1 Using slonik Command Directly

The traditional approach to administering slony is to craft slonik commands directly. An example of this given here.

The script to create the initial configuration for the simple master-slave setup of our pgbench database looks like this:

#!/bin/sh

slonik <<_EOF_
#--
define the namespace the replication system uses in our example it is
slony_example
#--
cluster name = $CLUSTERNAME;

#--
admin conninfo’s are used by slonik to connect to the nodes one for each
node on each side of the cluster, the syntax is that of PQconnectdb in
the C-API
--
node 1 admin conninfo = ’dbname=$MASTERDBNAME host=$MASTERHOST user=$REPLICATIONUSER’;
node 2 admin conninfo = ’dbname=$SLAVEDBNAME host=$SLAVEHOST user=$REPLICATIONUSER’;

#--
init the first node. Its id MUST be 1. This creates the schema
_$CLUSTERNAME containing all replication system specific database
objects.

#--
init cluster (id=1, comment = ’Master Node’);

#--
Slony-I organizes tables into sets. The smallest unit a node can
subscribe is a set. The following commands create one set containing
all 4 pgbench tables. The master or origin of the set is node 1.
#--
create set (id=1, origin=1, comment=’All pgbench tables’);
set add table (set id=1, origin=1, id=1, fully qualified name = ’public.pgbench_accounts ←↩

’, comment=’accounts table’);
set add table (set id=1, origin=1, id=2, fully qualified name = ’public.pgbench_branches ←↩

’, comment=’branches table’);
set add table (set id=1, origin=1, id=3, fully qualified name = ’public.pgbench_tellers’, ←↩

comment=’tellers table’);
set add table (set id=1, origin=1, id=4, fully qualified name = ’public.pgbench_history’, ←↩

comment=’history table’);

#--
Create the second node (the slave) tell the 2 nodes how to connect to

Slony-I 2.1.4 Documentation 10 / 263

each other and how they should listen for events.
#--

store node (id=2, comment = ’Slave node’, event node=1);
store path (server = 1, client = 2, conninfo=’dbname=$MASTERDBNAME host=$MASTERHOST user= ←↩

$REPLICATIONUSER’);
store path (server = 2, client = 1, conninfo=’dbname=$SLAVEDBNAME host=$SLAVEHOST user= ←↩

$REPLICATIONUSER’);
EOF

Is the pgbench still running? If not, then start it again.

At this point we have 2 databases that are fully prepared. One is the master database in which pgbench is busy accessing and
changing rows. It’s now time to start the replication daemons.

On $MASTERHOST the command to start the replication engine is

slon $CLUSTERNAME "dbname=$MASTERDBNAME user=$REPLICATIONUSER host=$MASTERHOST"

Likewise we start the replication system on node 2 (the slave)

slon $CLUSTERNAME "dbname=$SLAVEDBNAME user=$REPLICATIONUSER host=$SLAVEHOST"

Even though we have the slon(1) running on both the master and slave, and they are both spitting out diagnostics and other
messages, we aren’t replicating any data yet. The notices you are seeing is the synchronization of cluster configurations between
the 2 slon(1) processes.

To start replicating the 4 pgbench tables (set 1) from the master (node id 1) the the slave (node id 2), execute the following script.

#!/bin/sh
slonik <<_EOF_

This defines which namespace the replication system uses

cluster name = $CLUSTERNAME;

Admin conninfo’s are used by the slonik program to connect
to the node databases. So these are the PQconnectdb arguments
that connect from the administrators workstation (where
slonik is executed).

node 1 admin conninfo = ’dbname=$MASTERDBNAME host=$MASTERHOST user=$REPLICATIONUSER’;
node 2 admin conninfo = ’dbname=$SLAVEDBNAME host=$SLAVEHOST user=$REPLICATIONUSER’;

Node 2 subscribes set 1

subscribe set (id = 1, provider = 1, receiver = 2, forward = no);

EOF

Any second now, the replication daemon on $SLAVEHOST will start to copy the current content of all 4 replicated tables. While
doing so, of course, the pgbench application will continue to modify the database. When the copy process is finished, the
replication daemon on $SLAVEHOST will start to catch up by applying the accumulated replication log. It will do this in little
steps, initially doing about 10 seconds worth of application work at a time. Depending on the performance of the two systems
involved, the sizing of the two databases, the actual transaction load and how well the two databases are tuned and maintained,
this catchup process may be a matter of minutes, hours, or eons.

If you encounter problems getting this working, check over the logs for the slon(1) processes, as error messages are likely to be
suggestive of the nature of the problem. The tool Section 5.1.1 is also useful for diagnosing problems with nearly-functioning
replication clusters.

Slony-I 2.1.4 Documentation 11 / 263

You have now successfully set up your first basic master/slave replication system, and the 2 databases should, once the slave
has caught up, contain identical data. That’s the theory, at least. In practice, it’s good to build confidence by verifying that the
datasets are in fact the same.

The following script will create ordered dumps of the 2 databases and compare them. Make sure that pgbench has completed, so
that there are no new updates hitting the origin node, and that your slon sessions have caught up.

#!/bin/sh
echo -n "**** comparing sample1 ... "
psql -U $REPLICATIONUSER -h $MASTERHOST $MASTERDBNAME >dump.tmp.1.$$ <<_EOF_

select ’accounts:’::text, aid, bid, abalance, filler
from pgbench_accounts order by aid;

select ’branches:’::text, bid, bbalance, filler
from pgbench_branches order by bid;

select ’tellers:’::text, tid, bid, tbalance, filler
from pgbench_tellers order by tid;

select ’history:’::text, tid, bid, aid, delta, mtime, filler, id
from pgbench_history order by id;

EOF
psql -U $REPLICATIONUSER -h $SLAVEHOST $SLAVEDBNAME >dump.tmp.2.$$ <<_EOF_

select ’accounts:’::text, aid, bid, abalance, filler
from pgbench_accounts order by aid;

select ’branches:’::text, bid, bbalance, filler
from pgbench_branches order by bid;

select ’tellers:’::text, tid, bid, tbalance, filler
from pgbench_tellers order by tid;

select ’history:’::text, tid, bid, aid, delta, mtime, filler, id
from pgbench_history order by id;

EOF

if diff dump.tmp.1.$$ dump.tmp.2.$$ >$CLUSTERNAME.diff ; then
echo "success - databases are equal."
rm dump.tmp.?.$$
rm $CLUSTERNAME.diff

else
echo "FAILED - see $CLUSTERNAME.diff for database differences"

fi

Note that there is somewhat more sophisticated documentation of the process in the Slony-I source code tree in a file called
slony-I-basic-mstr-slv.txt.

If this script returns FAILED please contact the developers at http://slony.info/. Be sure to be prepared with useful diagnostic
information including the logs generated by slon(1) processes and the output of Section 5.1.1.

2.1.3.2 Using the altperl Scripts

Using the Section 6.1.1 scripts is an alternative way to get started; it allows you to avoid writing slonik scripts, at least for some
of the simple ways of configuring Slony-I. The slonik_build_env script will generate output providing details you need to build
a slon_tools.conf, which is required by these scripts. An example slon_tools.conf is provided in the distribution to
get you started. The altperl scripts all reference this central configuration file centralize cluster configuration information. Once
slon_tools.conf has been created, you can proceed as follows:

Initialize cluster:
$ slonik_init_cluster | slonik

Start slon (here 1 and 2 are node numbers)
$ slon_start 1
$ slon_start 2

Create Sets (here 1 is a set number)
$ slonik_create_set 1 | slonik

http://slony.info/

Slony-I 2.1.4 Documentation 12 / 263

subscribe set to second node (1= set ID, 2= node ID)
$ slonik_subscribe_set 1 2 | slonik

You have now replicated your first database.

2.2 Starting & Stopping Replication

The slon(1) program is a daemon process that replicates data from one machine to another. The slon process is responsible for
the following tasks

• Generating ’SYNC’ events on the local database

• Processing events from remote nodes.

• Applying the updates pulled from a remote database to user tables to the local database.

• Performing cleanup tasks

2.2.1 Deploying Slon Processes

Each database in your cluster needs a slon process which it will act as the "node controller" for. The slon instance will consider
itself "local" to that database and establish "remote" connections to any other databases for which a SLONIK STORE PATH(7)
has been defined.

The slon process for a particular database does not need to run on the same server as the database. It is recommended (for
performance reasons) that the network connection between slon process and "local" database fairly fast but this is not required.
One common way of deploying Slony-I is to have the slon process running on the same node as the database it is servicing.
Another common deployment is to centralize the slon processes for all of the databases in a particular data-center on a single
administrative server.

It is important that the network connection between the slon processes and the database servers it talks to be reliable. If the
network connection goes away at the wrong time it can leave the database connection in a "zombied". Restarting the slon process
will repair this situation.

2.2.2 Starting Slon On Unix Systems

The slon process gets installed in your PostgreSQL bin directory, this is the same directory that psql and the postgres binary get
installed into. On a Unix system (including Linux variants) slon can be started either:

• Manually through the command line by invoking "slon" directly.

• By using the rc.d style start_slon.sh script found in the tools directory of the Slony-I source distribution.

2.2.2.1 Invoking slon Directly

To invoke slon directly you would execute the command

slon slony_example ’host=localhost dbname=pgbench user=pgbench’

See slon(1) for information on command line options.

Slony-I 2.1.4 Documentation 13 / 263

2.2.2.2 start_slon.sh

To start slon via the start_slon.sh script you will first need to create a slon.conf file with the configuration options for slon. This
is an example of a simple slon.conf file

cluster_name=slony_example
conn_info=host=localhost dbname=pgbench user=pgbench

You would then set the SLON_CONF environment variable to point at this file and start the slon.

export SLON_BIN=/usr/local/pgsql8.3/bin/slon
export SLON_CONF=/etc/slon/slon.conf
export SLON_LOG=/var/log/slon.log
/usr/local/pgsql8.3/bin/start_slon.sh start

2.2.3 Stopping Slon On a Unix System

On a Unix system the slon process (called the watchdog) slon will fork creating a child slon process (called the worker) that does
all the work. The watchdog monitors the worker and restarts the worker when required. To terminate slon you would send the
watchdog slon (the slon process that you started) a SIGTERM. If you started slon through the start_slon.sh script then you can
stop the slon via the "stop" command.

export SLON_BIN=/usr/local/pgsql8.3/bin/slon
export SLON_CONF=/etc/slon/slon.conf
export SLON_LOG=/var/log/slon.log
/usr/local/pgsql8.3/bin/start_slon.sh stop

2.2.4 Starting Slon On a MS-Windows System

On a MS-Windows system slon needs to be started as a service with a configuration file containing the settings for slon. An
example of a configuration file is below.

cluster_name=slony_example
conn_info=host=localhost dbname=pgbench user=pgbench

You then need to add the slon service

pgsql\lib>regsvr32 slevent.dll

--
-- running slon
--
pgsql\bin>slon -regservice Slony-I
pgsql\bin>slon -addengine Slony-I slon.conf
pgsql\bin>slon -listengines Slony-I

2.2.5 Stopping slon On MS-Windows

On MS-Windows the service manager starts slon as a service. This slon processs acts as the slon worker. The service manager
will start a new slon whenever the slon worker exists. To stop slon you need to disable the service. This can be done through the
service manager GUI or with the following commands

pgsql\bin>slon -delengine Slony-I slon.conf

Slony-I 2.1.4 Documentation 14 / 263

Chapter 3

Administration Tasks

3.1 Slony-I Building & Installation

Note
For Windows™ users: Unless you are planning on hacking the Slony-I code, it is highly recommended that you download and
install a prebuilt binary distribution and jump straight to the configuration section below. Prebuilt binaries are available from the
StackBuilder application included in the EnterpriseDB PostgreSQL installer
There are also RPM binaries available at that site for recent versions of Slony-I for recent versions of PostgreSQL.

This section discusses building Slony-I from source.

You should have obtained the Slony-I source from the previous step. Unpack it.

gunzip slony.tar.gz;
tar xf slony.tar

This will create a directory under the current directory with the Slony-I sources. Head into that that directory for the rest of the
installation procedure.

3.1.1 Short Version

PGMAIN=/usr/local/pgsql839-freebsd-2008-09-03 \
./configure \

--with-pgconfigdir=$PGMAIN/bin
gmake all; gmake install

3.1.2 Configuration

Slony-I normally needs to be built and installed by the PostgreSQL Unix user. The installation target must be identical to the
existing PostgreSQL installation particularly in view of the fact that several Slony-I components represent libraries and SQL
scripts that need to be in the Slony-I lib and share directories.

The first step of the installation procedure is to configure the source tree for your system. This is done by running the configure
script.Slony-I is configured by pointing it to the various PostgreSQL library, binary, and include directories. For a full list of
these options, use the command ./configure --help.

It is sufficient, for the purposes of building a usable build, to run configure --with-pgconfigdir=/some/path/somew
here, where /some/path/somewhere is the directory where the PostgreSQL program pg_config is located. Based on the

http://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Slony-I 2.1.4 Documentation 15 / 263

output of pg_config, the configure script determines the various locations where PostgreSQL components are found, which
indicate where the essential components of Slony-I must be installed.

For a full listing of configuration options, run the command ./configure --help.

Slony-I 2.1.4 Documentation 16 / 263

Warning
Beware: configure defaults to permit indicating values for various paths, including “generic” values:

• --bindir=DIR

user executables [EPREFIX/bin]

• --sbindir=DIR

system admin executables [EPREFIX/sbin]

• --libexecdir=DIR

program executables [EPREFIX/libexec]

• --sysconfdir=DIR

read-only single-machine data [PREFIX/etc]

• --sharedstatedir=DIR

modifiable architecture-independent data [PREFIX/com]

• --localstatedir=DIR

modifiable single-machine data [PREFIX/var]

• --libdir=DIR

object code libraries [EPREFIX/lib]

• --includedir=DIR

C header files [PREFIX/include]

• --oldincludedir=DIR

C header files for non-gcc [/usr/include]

• --datarootdir=DIR

read-only arch.-independent data root [PREFIX/share]

• --datadir=DIR

read-only architecture-independent data [DATAROOTDIR]

• --infodir=DIR

info documentation [DATAROOTDIR/info]

• --localedir=DIR

locale-dependent data [DATAROOTDIR/locale]

• --mandir=DIR

man documentation [DATAROOTDIR/man]

• --docdir=DIR

documentation root [DATAROOTDIR/doc/slony1]

• --htmldir=DIR

html documentation [DOCDIR]

• --dvidir=DIR

dvi documentation [DOCDIR]

• --pdfdir=DIR

pdf documentation [DOCDIR]

• --psdir=DIR

ps documentation [DOCDIR]

There are also PostgreSQL-specific options specified, which should not be expressly set, as pg_config should already
provide correct values:

• --with-pgbindir=DIR

Location of the PostgreSQL postmaster.

• --with-pgincludedir=DIR

Location of the PostgreSQL headers.

• --with-pgincludeserverdir=DIR

Location of the PostgreSQL server headers.

• --with-pglibdir=DIR

Location of the PostgreSQL libs.

• --with-pgpkglibdir=DIR

Location of the PostgreSQL pkglibs. E.g. plpgsql.so

• --with-pgsharedir=DIR

Location of the PostgreSQL share dir. E.g. postgresql.conf.sample

Slony-I 2.1.4 Documentation 17 / 263

The compile of PostgreSQL must be expressly configured with the option --enable-thread-safety to provide correct client
libraries.

Slony-I requires that the PostgreSQL server headers be installed. Some binary distributions of PostgreSQL include this is a a
-dev package.

After running configure, you may wish to review the file Makefile.global to ensure it is looking in the right places for all
of the components.

3.1.3 Example

After determining that the PostgreSQL instance to be used is installed in /opt/dbs/pgsql746-aix-2005-04-01:

PGMAIN=/opt/dbs/pgsql746-aix-2005-04-01 \
./configure \

--with-pgconfigdir=$PGMAIN/bin

The configure script will run a number of tests to guess values for various dependent variables and try to detect some quirks of
your system. Slony-I is known to need a modified version of libpq on specific platforms such as Solaris2.X on SPARC. A patch for
libpq version 7.4.2 can be found at http://developer.postgresql.org/~wieck/slony1/download/threadsafe-libpq-742.diff.gz Similar
patches may need to be constructed for other versions.

3.1.4 Build

To start the build process, type

gmake all

Be sure to use GNU make; on BSD systems, it is called gmake; on Linux, GNU make is typically the “native” make, so the
name of the command you type in may be either make or gmake. On other platforms, you may need additional packages or
even install GNU make from scratch. The build may take anywhere from a few seconds to 2 minutes depending on how fast your
hardware is at compiling things. The last line displayed should be

All of Slony-I is successfully made. Ready to install.

3.1.5 Installing Slony-I Once Built;

To install Slony-I, enter gmake install

This will install files into the postgresql install directory as specified by the configure --prefix option used in the PostgreSQL
installation. Make sure you have appropriate permissions to write into that area. Commonly you need to do this either as root or
as the postgres user.

The main list of files installed within the PostgreSQL instance is, for versions of Slony-I

• $bindir/slon

• $bindir/slonik

• $libdir/slony1_funcs$(DLSUFFIX)

• $datadir/slony1_base.sql

• $datadir/slony1_funcs.sql

• $datadir/slony1_funcs.v83.sql

• $datadir/slony1_funcs.v84.sql

http://developer.postgresql.org/~wieck/slony1/download/threadsafe-libpq-742.diff.gz

Slony-I 2.1.4 Documentation 18 / 263

3.1.6 Building on Win32

Building Slony-I on Win32 with the Microsoft SDK (Visual Studio) is different than building Slony-I on other platforms. Visual
Studio builds can be done with out involving configure or gmake. To build Slony-I you need

• The Slony-I source from a source distribution tar (The distribution tar files contain pre-built copies of the parser and scanner
generated files. The Win32 makefiles do not currently support building these).

• PostgreSQL binaries, headers and libraries.

• pthreads for win32

• The Microsoft SDK 6.1 or Visual Studio 2008 (other versions might work)

• gettext for win32 or gettext for win64

To compile the Slony-I binaries you will need to

• Set the environment variables PGSHARE,PG_INC,PG_LIB, PTHREADS_INC,PTHREADS_LIB, GETTEXT_LIB to point
to the proper locations based on where these applications were installed. The PGVER environment variable should be set the
PostgreSQL MAJOR number of the PostgreSQL instance you are compiling against(8.4 , 9.1, etc..). For example

set PG_INC=c:\Postgresql\9.0\include
set PG_LIB=c:\Postgresql\9.0\lib
set PGSHARE=c:\\Postgresql\\9.0\\share
set PTHREADS_INC=c:\pthreads-win32\include
set PTHREADS_LIB=c:\pthreads-win32\lib
set GETTEXT_LIB=c:\gettext\lib
set GETTEXT_INC=c:\gettext\include
set PGVER=9.2

Note that the backslash characters must be escaped for PGSHARE as in the above example

From the Visual Studio or Microsoft Windows SDK command prompt run

cd src\backend
nmake /f win32.mak slony1_funcs.dll
cd ..\slon
nmake /f win32.mak slon.exe
cd ..\slonik
nmake /f win32.mak slonik.exe

src\backend\slony1_funcs.dll and any of the .sql files in src\backend need to be installed in your postgresql $share directory. You
might also need to copy pthreadVC2.dll from %PTHREADS_LIB%\..\dll\(x64 or x86) to the PostgreSQL bin directory.

3.1.7 Building Documentation: Admin Guide

The document you are reading now is a fairly extensive “Administrator’s Guide” containing what wisdom has been discovered
and written down about the care and feeding of Slony-I.

This is only built if you specify --with-docs

Note that you may have difficulty building the documentation on older Red Hat systems (RHEL4 and below) See Bug 159382
(For RHEL) See the INSTALL file for a workaround for Fedora...

A pre-built copy of the “admin guide” should be readily available, either in the form of a separate tarball nearby, or in the
directory doc/adminguide/prebuilt

http://sources.redhat.com/pthreads-win32
http://sourceforge.net/projects/gettext/
http://ftp.acc.umu.se/pub/GNOME/binaries/win64/dependencies/
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=159382
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=159382

Slony-I 2.1.4 Documentation 19 / 263

3.1.8 Installing Slony-I from RPMs

Even though Slony-I can be compiled and run on most Linux distributions, it is also possible to install Slony-I using binary
packages. Slony Global Development Team provides official RPMs and SRPMs for many versions or Red Hat and Fedora .

The RPMs are available at PostgreSQL RPM Repository. Please read the howto provided in the website for configuring yum to
use that repository. Please note that the RPMs will look for RPM installation of PostgreSQL, so if you install PostgreSQL from
source, you should manually ignore the RPM dependencies related to PostgreSQL.

Installing Slony-I using these RPMs is as easy as installing any RPM.

yum install slony1

yum will pick up dependencies. This repository provides Slony-I binaries built against every supported PostgreSQL version.

The RPM installs the files into their usual places. The configuration files are installed under /etc, the binary files are installed in
/usr/bin, libraries are installed in /usr/lib/pgsql, and finally the docs are installed in /usr/share/doc/slony1.

3.1.9 Installing the Slony-I service on Windows™

On Windows™ systems, instead of running one slon(1) daemon per node, a single slon service is installed which can then be
controlled through the Services control panel applet, or from a command prompt using the net command.

C:\Program Files\PostgreSQL\8.3\bin> slon -regservice my_slon
Service registered.
Before you can run Slony, you must also register an engine!

WARNING! Service is registered to run as Local System. You are
encouraged to change this to a low privilege account to increase
system security.

Once the service is installed, individual nodes can be setup by registering slon configuration files with the service.

C:\Program Files\PostgreSQL\8.3\bin> slon -addengine my_slon c:\node1.conf
Engine added.

Other, self explanatory commands include slon -unregservice <service name>, slon -listengines <service name> and slon
-delengine <service name> <config file>.

For further information about the Windows™ port, you may want to see the following URLs:

• Slony-I Windows installer sample

3.2 Modifying Things in a Replication Cluster

3.2.1 Adding a Table To Replication

After your Slony-I cluster is setup and nodes are subscribed to your replication set you can still add more tables to replication. To
do this you must first create the table on each node. You can do this using psql (on each node) or using the SLONIK EXECUTE
SCRIPT(7) command. Next, you should create a new replication set and add the table (or sequence) to the new replication set.
Then you subscribe your subscribers to the new replictation set. Once the subscription process is finished you can merge your
new replication set into the old one.

slonik <<_EOF_
#--
define the namespace the replication system uses in our example it is
slony_example
#--

http://yum.postgresql.org
http://developer.pgadmin.org/~hiroshi/Slony-I/

Slony-I 2.1.4 Documentation 20 / 263

cluster name = $CLUSTERNAME;

#--
admin conninfo’s are used by slonik to connect to the nodes one for each
node on each side of the cluster, the syntax is that of PQconnectdb in
the C-API
--
node 1 admin conninfo = ’dbname=$MASTERDBNAME host=$MASTERHOST user=$REPLICATIONUSER’;
node 2 admin conninfo = ’dbname=$SLAVEDBNAME host=$SLAVEHOST user=$REPLICATIONUSER’;

create set (id=2, origin=1, comment=’a second replication set’);
set add table (set id=2, origin=1, id=5, fully qualified name = ’public.newtable’, comment ←↩

=’some new table’);
subscribe set(id=2, provider=1,receiver=2);
merge set(id=1, add id=2,origin=1);

3.2.2 How To Add Columns To a Replicated Table

There are two approaches you can use for adding (or renaming) columns to an existing replicated table.

The first approach involves you using the SLONIK EXECUTE SCRIPT(7) command. With this approach you would

1. Create a SQL script with your ALTER table statements

2. Stop any application updates to the table you are changing (ie have an outage)

3. Use the slonik SLONIK EXECUTE SCRIPT(7) command to run your script

Your table should now be updated on all databases in the cluster.

Alternatively, if you have the altperl scripts installed, you may use slonik_execute_script for this purpose:

slonik_execute_script [options] set# full_path_to_sql_script_file

See slonik_execute_script -h for further options; note that this uses SLONIK EXECUTE SCRIPT(7) underneath.

There are a number of “sharp edges” to note...

• You absolutely must not include transaction control commands, particularly BEGIN and COMMIT, inside these DDL scripts.
Slony-I wraps DDL scripts with a BEGIN/COMMIT pair; adding extra transaction control will mean that parts of the DDL
will commit outside the control of Slony-I

• Version 2.0 of Slony-I does not explicitly lock tables when performing an execute script. To avoid some race-conditions
exposed by MVCC it is important that no other transactions are altering the tables being used by the ddl script while it is
running

3.2.3 How to remove replication for a node

You will want to remove the various Slony-I components connected to the database(s).

We will just consider, for now, doing this to one node. If you have multiple nodes, you will have to repeat this as many times as
necessary.

Components to be Removed:

• Log Triggers / Update Denial Triggers

• The “cluster” schema containing Slony-I tables indicating the state of the node as well as various stored functions

• slon(1) process that manages the node

Slony-I 2.1.4 Documentation 21 / 263

• Optionally, the SQL and pl/pgsql scripts and Slony-I binaries that are part of the PostgreSQL build. (Of course, this would
make it challenging to restart replication; it is unlikely that you truly need to do this...)

The second approach involves using psql to alter the table directly on each database in the cluster.

1. Stop any application updates to the table you are changing(ie have on outage)

2. Connect to each database in the cluster (in turn) and make the required changes to the table

Warning
The psql approach is only safe with Slony-I 2.0 or greater

Things are not fundamentally different whether you are adding a brand new, fresh node, or if you had previously dropped a node
and are recreating it. In either case, you are adding a node to replication.

3.2.4 Adding a Replication Node

To add a node to the replication cluster you should

1. Create a database for the node and install your application schema in it.

createdb -h $NEWSLAVE_HOST $SLAVEDB
pg_dump -h $MASTER_HOST -s $MASTERDB | psql -h $NEWSLAVE_HOST $SLAVEDB

2. Create the node with the SLONIK STORE NODE(7) command

cluster name=testcluster;
node 5 admin conninfo=’host=slavehost dbname=slavedb user=slony password=slony’;

store node(id=5,comment=’some slave node’,event node=1);

3. Create paths between the new node and its provider node with the SLONIK STORE PATH(7) command.

cluster name=testcluster;
node 5 admin conninfo=’host=slavehost dbname=slavedb user=slony password=slony’;
node 1 admin conninfo=’host=masterhost dbname=masterdb user=slony password=slony’;
also include the admin conninfo lines for any other nodes in your cluster.
#
#
cluster name=testcluster;
store path(server=1,client=5,conninfo=’host=masterhost,dbname=masterdb,user=slony, ←↩

password=slony’);
store path(server=5,client=1,conninfo=’host=slavehost,dbname=masterdb,user=slony, ←↩

password=slony’);

4. Subscribe the new node to the relevant replication sets

cluster name=testcluster;
node 5 admin conninfo=’host=slavehost dbname=slavedb user=slony password=slony’;
node 1 admin conninfo=’host=masterhost dbname=slavedb user=slony password=slony’;
#
also include the admin conninfo lines for any other nodes in the cluster
#
#
cluster name=testcluster;
subscribe set(id=1,provider=1, receiver=5,forward=yes);

Slony-I 2.1.4 Documentation 22 / 263

3.2.5 Adding a Cascaded Replica

In a standard Slony-I configuration all slaves(replicas) communicate directly with the master (origin). Sometimes it is more
desirable to have some of your slaves(replicas) feed off of another replica. This is called a cascaded replica and is supported by
Slony-I For example you might have a Slony-I cluster with 1 replication set (set id=1) and three nodes. The master (origin) for
set 1 (node id=1), a node in a different data center that reads directly from the master (node id=2) and a third node in the same
data center as the slave (node id=3). To the subscription sets in this configuration you need to make sure that paths exist between
nodes 2 and nodes 3. Then to perform the subscription you could use the following slonik commands.

#Setup path between node 1==>2
store path(server=1,client=2,conninfo=’host=masterhost,dbname=masterdb,user=slony,password= ←↩

slony’);
store path(server=2,client=1,conninfo=’host=slave2host,dbname=slave2db,user=slony,password= ←↩

slony’);

#Setup path between node 2==>3
store path(server=3,client=2,conninfo=’host=slave3host,dbname=slave3db,user=slony,password= ←↩

slony’);
store path(server=2,client=3,conninfo=’host=slave2host,dbname=slave2db,user=slony,password= ←↩

slony’);

subscribe set(set id=1, provider=1, receiver=2,forward=yes);
subscribe set (set id=1,provider=2, receiver=3,forward=yes);
wait for event(origin=1, confirmed=all, wait on=1);

In the above example we define paths from 1==>2 and from 2==>3 but do not define a path between nodes 1===>3. If a path
between node 1 and 3 was defined the data data for set 1 would still flow through node 2 because node 2 is the origin for set 1.
However if node 2 were to fail nodes 1 and 3 would be unable to talk to each other unless a path between nodes 1 and nodes 3
had been defined.

3.2.6 How do I use Log Shipping?

Discussed in the Log Shipping section...

3.2.7 How To Remove Replication For a Node

You will want to remove the various Slony-I components connected to the database(s).

We will just discuss doing this to one node. If you have multiple nodes, you will have to repeat this as many times as necessary.

Removing slony from a node involves deleting the slony schema (tables, functions and triggers) from the node in question and
telling the remaining nodes that the deleted node no longer exists. The slony SLONIK DROP NODE(7) command does both of
these items while hte SLONIK UNINSTALL NODE(7) command only removes the slony schema from the node.

In the case of a failed node (where you used SLONIK FAILOVER(7) to switch to another node), you may need to use SLONIK
UNINSTALL NODE(7) to drop out the triggers and schema and functions.

Warning
Removing Slony-I from a replica in versions before 2.0 is more complicated. If this applies to you then you should
consult the Slony-I documentation for the version of Slony-I you are using.

3.2.8 Changing a Nodes Provider

For instance, you might want subscriber node 3 to draw data from node 1, when it is presently drawing data from node 2.

The SLONIK SUBSCRIBE SET(7) command can be used to do this. For existing subscriptions it can revise the subscription
information.

Slony-I 2.1.4 Documentation 23 / 263

subscribe set(id=1,origin=1, provider=2,forward=yes);

3.2.9 Moving The Master From One Node To Another

Sometimes you will want to promote one of your replicas (slaves) to become the master and at the same time turn the former
master into a slave. Slony-I supports this with the SLONIK MOVE SET(7) command.

You must first pick a node that is connected to the former origin (otherwise it is not straightforward to reverse connections in the
move to keep everything connected).

Second, you must run a slonik(1) script with the command SLONIK LOCK SET(7) to lock the set on the origin node. Note that
at this point you have an application outage under way, as what this does is to put triggers on the origin that rejects updates.

Now, submit the slonik(1) SLONIK MOVE SET(7) request. It’s perfectly reasonable to submit both requests in the same slonik(1)
script. Now, the origin gets switched over to the new origin node. If the new node is a few events behind, it may take a little
while for this to take place.

LOCK SET(id=1,ORIGIN=1);
MOVE SET(ID=1,OLD ORIGIN=1, NEW ORIGIN=3);
SYNC(ID=3);
WAIT FOR(ORIGIN=1, CONFIRMED=ALL,WAIT ON=1);

It is important to stop all non-Slony application activity against all tables in the replication set before locking the sets. The
move set procedure involves obtaining a lock on every table in the replication set. Other activities on these tables can result in a
deadlock.

3.3 Database Schema Changes (DDL)

When changes are made to the database schema, e.g. - adding fields to a table, it is necessary for this to be handled rather
carefully, otherwise different nodes may get rather deranged because they disagree on how particular tables are built.

Slony-I can not automatically detect and replicate database schema changes however, Slony-I does provide facilities to assist in
making database schema changes. Schema changes can be done on a replicated database either by using the Slony-I SLONIK
EXECUTE SCRIPT(7) (slonik) command or by manually applying the changes to each node.

3.3.1 DDL Changes with Execute Script

The SLONIK EXECUTE SCRIPT(7) (slonik) command allows you to submit a SQL script (that can, but is not required to)
contain DDL commands. This script will be executed on the event node and then (optionally) replicated to every other node in
the cluster. You should keep the following in mind when using SLONIK EXECUTE SCRIPT(7)

• The script must not contain transaction BEGIN or END statements, as the script is already executed inside a transaction though
nested transactions are allowed as long are processed within the scope of a single transaction whose BEGIN and END you do
not control.

• If there is anything broken about the script, or about how it executes on a particular node (other than the event node), this will
cause the slon(1) daemon for that node to panic and crash. You may see various expected messages (positive and negative) in
Section 5.5.6.2. If you restart the slon, it will, most likely, try to repeat the DDL script, which will, almost certainly, fail the
second time in the same way it did the first time.

The implication of this is that it is vital that modifications not be made in a haphazard way on one node or another. The schemas
must always stay in sync. If slon; fails due to a failed DDL change then you should manually (via psql) make the required
changes so that the DDL change succeeds the next time slon attempts it.

• Slony-I 2.0.x and 2.1.x suffer from an issue where concurrent transactions involving the same tables as are referenced in the
script might not be replayed in exactly the same order on the replica nodes. It is advisiable to not be concurrently insert-
ing,deleting or updating rows to a table while a script changing that table (adding or deleting columns) is also running.

Slony-I 2.1.4 Documentation 24 / 263

3.3.2 Applying DDL Changes Directly

DDL changes can be applied directly on a node through an application such as psql. The DDL changes will not be replicated
by Slony-I and therefore must be manually applied to every relevant node. The following points should be kept in mind when
applying DDL changes directly.

• While DDL changes are not automatically replicated, any INSERT,UPDATE,DELETE statements that you execute will be
captured for replication, when run against the origin node. This means that you should not include DDL changes and DML
inside the same script when apply DDL directly, because the script will not behave properly when you execute it on other
nodes.

If you, instead, apply DDL using EXECUTE SCRIPT, it is fine to intersperse DDL and DML within the script, as Slony-I
handles that appropriately.

• You are responsible for ensuring that your scripts get applied on all other nodes at the correct point in the replication stream
(e.g. - on or before the appropriate SYNC event). The best way of doing this with respect to adding and deleting columns is to
make sure that new columns always get added on the replica nodes first and that columns being removed are dropped from the
master before they are dropped from the replicas. That way, new columns are always available on the subscriber on or before
the time they will be needed, and obsolete ones remain on the subscriber until after the last possible reference to them has been
replicated.

Warning
If columns being added or dropped are mandatory (NOT NULL) or have default values, you will need to go through a
longer process to ensure constraints are satisfied at each point in time on all nodes.
For instance, if dropping a column that has a NOT NULL constraint, it may take multiple ALTER TABLE statements
on each node in order to successfully accomplish this, as the constraint needs to be relaxed first.

• DDL changes that rename a replicated table do not inform Slony-I of the new table name. If you change then name of
a replicated table you must allow Slony-I to find the new table name by calling schemadocupdaterelname(p_only_on_node
integer, p_set_id integer)

• DDL changes that alter either a primary key, a unique constraint that slony is using, or DDL changes that drop columns
that come before the key or unique constraint that Slony-I is using will require Slony-I too reconfigure the arguments on the
logtrigger. The function schemadocrepair_log_triggers(only_locked boolean) will reconfigure the trigger arguments of any
Slony-I log triggers that are out of date. If true is passed to this function it will only adjust tables that are already locked by
the current transaction (if you perform your alter table within a transaction and then call repair_log_triggers() as
part of the same transaction then the altered tables will be locked). If you pass false to this function then the function will
obtain an exclusive lock on any table that needs the trigger to be reconfigured.

3.4 Doing switchover and failover with Slony-I

3.4.1 Foreword

Slony-I is an asynchronous replication system. Because of that, it is almost certain that at the moment the current origin of a
set fails, the final transactions committed at the origin will have not yet propagated to the subscribers. Systems are particularly
likely to fail under heavy load; that is one of the corollaries of Murphy’s Law. Therefore the principal goal is to prevent the main
server from failing. The best way to do that is frequent maintenance.

Opening the case of a running server is not exactly what we should consider a “professional” way to do system maintenance.
And interestingly, those users who found it valuable to use replication for backup and failover purposes are the very ones that
have the lowest tolerance for terms like “system downtime.” To help support these requirements, Slony-I not only offers failover
capabilities, but also the notion of controlled origin transfer.

It is assumed in this document that the reader is familiar with the slonik(1) utility and knows at least how to set up a simple 2
node replication system with Slony-I.

Slony-I 2.1.4 Documentation 25 / 263

3.4.2 Controlled Switchover

We assume a current “origin” as node1 with one “subscriber” as node2 (e.g. - slave). A web application on a third server is
accessing the database on node1. Both databases are up and running and replication is more or less in sync. We do controlled
switchover using SLONIK MOVE SET(7).

• At the time of this writing switchover to another server requires the application to reconnect to the new database. So in
order to avoid any complications, we simply shut down the web server. Users who use pg_pool for the applications database
connections merely have to shut down the pool.

What needs to be done, here, is highly dependent on the way that the application(s) that use the database are configured.
The general point is thus: Applications that were connected to the old database must drop those connections and establish
new connections to the database that has been promoted to the “master” role. There are a number of ways that this may be
configured, and therefore, a number of possible methods for accomplishing the change:

– The application may store the name of the database in a file.
In that case, the reconfiguration may require changing the value in the file, and stopping and restarting the application to get
it to point to the new location.

– A clever usage of DNS might involve creating a CNAME DNS record that establishes a name for the application to use to
reference the node that is in the “master” role.
In that case, reconfiguration would require changing the CNAME to point to the new server, and possibly restarting the
application to refresh database connections.

– If you are using pg_pool or some similar “connection pool manager,” then the reconfiguration involves reconfiguring this
management tool, but is otherwise similar to the DNS/CNAME example above.

Whether or not the application that accesses the database needs to be restarted depends on how it is coded to cope with failed
database connections; if, after encountering an error it tries re-opening them, then there may be no need to restart it.

• A small slonik(1) script executes the following commands:

lock set (id = 1, origin = 1);
wait for event (origin = 1, confirmed = 2);
move set (id = 1, old origin = 1, new origin = 2);
wait for event (origin = 1, confirmed = 2, wait on=1);

After these commands, the origin (master role) of data set 1 has been transferred to node2. And it is not simply transferred;
it is done in a fashion such that node1 becomes a fully synchronized subscriber, actively replicating the set. So the two nodes
have switched roles completely.

• After reconfiguring the web application (or pgpool) to connect to the database on node2, the web server is restarted and resumes
normal operation.

Done in one shell script, that does the application shutdown, slonik, move config files and startup all together, this entire
procedure is likely to take less than 10 seconds.

You may now simply shutdown the server hosting node1 and do whatever is required to maintain the server. When slon(1) node1
is restarted later, it will start replicating again, and soon catch up. At this point the procedure to switch origins is executed again
to restore the original configuration.

This is the preferred way to handle things; it runs quickly, under control of the administrators, and there is no need for there to
be any loss of data.

After performing the configuration change, you should, run the Section 5.1.1 scripts in order to validate that the cluster state
remains in good order after this change.

3.4.3 Failover

If some more serious problem occurs on the “origin” server, it may be necessary to SLONIK FAILOVER(7) to a backup server.
This is a highly undesirable circumstance, as transactions “committed” on the origin, but not applied to the subscribers, will be

http://www.iana.org/assignments/dns-parameters

Slony-I 2.1.4 Documentation 26 / 263

lost. You may have reported these transactions as “successful” to outside users. As a result, failover should be considered a
last resort. If the “injured” origin server can be brought up to the point where it can limp along long enough to do a controlled
switchover, that is greatly preferable.

Slony-I does not provide any automatic detection for failed systems. Abandoning committed transactions is a business decision
that cannot be made by a database system. If someone wants to put the commands below into a script executed automatically
from the network monitoring system, well ... it’s your data, and it’s your failover policy.

• The slonik(1) command

failover (id = 1, backup node = 2);

causes node2 to assume the ownership (origin) of all sets that have node1 as their current origin. If there should happen to be
additional nodes in the Slony-I cluster, all direct subscribers of node1 are instructed that this is happening. Slonik will also
query all direct subscribers in order to determine out which node has the highest replication status (e.g. - the latest committed
transaction) for each set, and the configuration will be changed in a way that node2 first applies those final before actually
allowing write access to the tables.

In addition, all nodes that subscribed directly to node1 will now use node2 as data provider for the set. This means that after
the failover command succeeded, no node in the entire replication setup will receive anything from node1 any more.

Note
Note that in order for node 2 to be considered as a candidate for failover, it must have been set up with the SLONIK SUB-
SCRIBE SET(7) option forwarding = yes, which has the effect that replication log data is collected in sl_log_1/sl_log_2 on
node 2. If replication log data is not being collected, then failover to that node is not possible.

• Reconfigure and restart the application (or pgpool) to cause it to reconnect to node2.

• Purge out the abandoned node

You will find, after the failover, that there are still a full set of references to node 1 in sl_node, as well as in referring tables
such as sl_confirm; since data in sl_log_1/sl_log_2 is still present, Slony-I cannot immediately purge out the node.

After the failover is complete and all nodes have been reconfigured you can remove all remnants of node1’s configuration
information with the SLONIK DROP NODE(7) command:

drop node (id = 1, event node = 2);

Supposing the failure resulted from some catastrophic failure of the hardware supporting node 1, there might be no “remains”
left to look at. If the failure was not “total”, as might be the case if the node had to be abandoned due to a network commu-
nications failure, you will find that node 1 still “imagines” itself to be as it was before the failure. See Section 3.4.6 for more
details on the implications.

• After performing the configuration change, you should, as run the Section 5.1.1 scripts in order to validate that the cluster state
remains in good order after this change.

3.4.4 Failover With Complex Node Set

Failover is relatively “simple” if there are only two nodes; if a Slony-I cluster comprises many nodes, achieving a clean failover
requires careful planning and execution.

Slony-I 2.1.4 Documentation 27 / 263

Consider the following diagram describing a set of six nodes at two sites.

Let us assume that nodes 1, 2, and 3 reside at one data centre, and that we find ourselves needing to perform failover due to
failure of that entire site. Causes could range from a persistent loss of communications to the physical destruction of the site; the
cause is not actually important, as what we are concerned about is how to get Slony-I to properly fail over to the new site.

We will further assume that node 5 is to be the new origin, after failover.

The sequence of Slony-I reconfiguration required to properly failover this sort of node configuration is as follows:

• Resubscribe (using SLONIK SUBSCRIBE SET(7)) each node that is to be kept in the reformation of the cluster that is not
already subscribed to the intended data provider.

In the example cluster, this means we would likely wish to resubscribe nodes 4 and 6 to both point to node 5.

include </tmp/failover-preamble.slonik>;
subscribe set (id = 1, provider = 5, receiver = 4);
subscribe set (id = 1, provider = 5, receiver = 6);
wait for event(origin=1, confirmed=4,wait on=1);
wait for event(origin=1, confirmed=6, wait on=1);

• Drop all unimportant nodes, starting with leaf nodes.

Since nodes 1, 2, and 3 are unaccessible, we must indicate the EVENT NODE so that the event reaches the still-live portions of
the cluster.

include </tmp/failover-preamble.slonik>;
drop node (id=2, event node = 4);
drop node (id=3, event node = 4);

Slony-I 2.1.4 Documentation 28 / 263

• Now, run FAILOVER.

include </tmp/failover-preamble.slonik>;
failover (id = 1, backup node = 5);

• Finally, drop the former origin from the cluster.

include </tmp/failover-preamble.slonik>;
drop node (id=1, event node = 4);

3.4.5 Automating FAIL OVER

If you do choose to automate FAIL OVER , it is important to do so carefully. You need to have good assurance that the failed
node is well and truly failed, and you need to be able to assure that the failed node will not accidentally return into service,
thereby allowing there to be two nodes out there able to respond in a “master” role.

Note
The problem here requiring that you “shoot the failed node in the head” is not fundamentally about replication or Slony-I; Slony-I
handles this all reasonably gracefully, as once the node is marked as failed, the other nodes will “shun” it, effectively ignoring
it. The problem is instead with your application. Supposing the failed node can come back up sufficiently that it can respond to
application requests, that is likely to be a problem, and one that hasn’t anything to do with Slony-I. The trouble is if there are
two databases that can respond as if they are “master” systems.

When failover occurs, there therefore needs to be a mechanism to forcibly knock the failed node off the network in order to
prevent applications from getting confused. This could take place via having an SNMP interface that does some combination of
the following:

• Turns off power on the failed server.

If care is not taken, the server may reappear when system administrators power it up.

• Modify firewall rules or other network configuration to drop the failed server’s IP address from the network.

If the server has multiple network interfaces, and therefore multiple IP addresses, this approach allows the “application”
addresses to be dropped/deactivated, but leave “administrative” addresses open so that the server would remain accessible to
system administrators.

3.4.6 After Failover, Reconfiguring Former Origin

What happens to the failed node will depend somewhat on the nature of the catastrophe that lead to needing to fail over to another
node. If the node had to be abandoned because of physical destruction of its disk storage, there will likely not be anything of
interest left. On the other hand, a node might be abandoned due to the failure of a network connection, in which case the former
“provider” can appear be functioning perfectly well. Nonetheless, once communications are restored, the fact of the FAIL OVER
makes it mandatory that the failed node be abandoned.

After the above failover, the data stored on node 1 will rapidly become increasingly out of sync with the rest of the nodes, and
must be treated as corrupt. Therefore, the only way to get node 1 back and transfer the origin role back to it is to rebuild it from
scratch as a subscriber, let it catch up, and then follow the switchover procedure.

A good reason not to do this automatically is the fact that important updates (from a business perspective) may have been
committed on the failing system. You probably want to analyze the last few transactions that made it into the failed node to see if
some of them need to be reapplied on the “live” cluster. For instance, if someone was entering bank deposits affecting customer
accounts at the time of failure, you wouldn’t want to lose that information.

Slony-I 2.1.4 Documentation 29 / 263

Warning
It has been observed that there can be some very confusing results if a node is “failed” due to a persistent network
outage as opposed to failure of data storage. In such a scenario, the “failed” node has a database in perfectly fine form;
it is just that since it was cut off, it “screams in silence.”
If the network connection is repaired, that node could reappear, and as far as its configuration is concerned, all is well,
and it should communicate with the rest of its Slony-I cluster.
In fact, the only confusion taking place is on that node. The other nodes in the cluster are not confused at all; they know
that this node is “dead,” and that they should ignore it. But there is not a way to know this by looking at the “failed” node.
This points back to the design point that Slony-I is not a network monitoring tool. You need to have clear methods of
communicating to applications and users what database hosts are to be used. If those methods are lacking, adding
replication to the mix will worsen the potential for confusion, and failover will be a point at which there is enormous
potential for confusion.

If the database is very large, it may take many hours to recover node1 as a functioning Slony-I node; that is another reason to
consider failover as an undesirable “final resort.”

3.4.7 Planning for Failover

Failover policies should be planned for ahead of time.

Most pointedly, any node that is expected to be a failover target must have its subscription(s) set up with the option FORWARD
= YES. Otherwise, that node is not a candidate for being promoted to origin node.

This may simply involve thinking about what the priority lists should be of what should fail to what, as opposed to trying to
automate it. But knowing what to do ahead of time cuts down on the number of mistakes made.

At Afilias, a variety of internal [?] guides have been created to provide checklists of what to do when certain “unhappy” events
take place. This sort of material is highly specific to the environment and the set of applications running there, so you would
need to generate your own such documents. This is one of the vital components of any disaster recovery preparations.

Slony-I 2.1.4 Documentation 30 / 263

Chapter 4

Advanced Concepts

4.1 Events & Confirmations

Slony-I transfers configuration changes and application data through events. Events in Slony-I have an origin, a type and some
parameters. When an event is created it is inserted into the event queue (the sl_event table) on the node the event originates on.
The remoteListener threads for each remote slon(1) process then picks up that event (by querying the table sl_event) and pass the
event to the slon(1)’s remoteWorker thread for processing.

An event is uniquely identified via the combination of the node id of the node the event originates on and the event sequence
number for that node. For example, (1,5000001) identifies event 5000001 originating from node 1. In contrast, (3,5000001)
identifies a different event that originated on a different node.

4.1.1 SYNC Events

SYNC events are used to transfer application data for one node to the next. When data in a replicated table changes, a trigger fires
that records information about the change in the sl_log_1 or sl_log_2 tables. The localListener thread in the slon processes will
then periodically generate a SYNC event. When the SYNC event is created, Slony-I will determine the highest log_seqid assigned
so far along with a list of log_seqid’s that were assigned to transactions that have not yet been committed. This information is all
stored as part of the SYNC event.

When the remoteWorker thread for a slon(1) processes a SYNC, it queries the rows from sl_log_1 and sl_log_2 that are covered
by the SYNC (e.g. - log_seqid rows that had been committed at the time the SYNC was generated). The data modifications
indicated by this logged data are then applied to the subscriber.

4.1.2 Event Confirmations

When an event is processed by the slon(1) process for a remote node, a CONFIRM message is generated by inserting a tuple into
the sl_confirm table. This tuple indicates that a particular event has been confirmed by a particular receiver node. Confirmation
messages are then transferred back to all other nodes in the cluster.

4.1.3 Event cleanup

The slon(1) cleanupThread periodically runs the schemadoccleanupevent(p_interval interval) database function that deletes all
but the most recently confirmed event for each origin/receiver pair (this is safe to do because if an event has been confirmed by a
receiver, then we know that all older events from that origin have also been confirmed by the receiver). Then the function deletes
all SYNC events that are older than the oldest row left in sl_confirm (for each origin). The data for these deleted events will also
be removed from the sl_log_1 and sl_log_2 tables.

When Slony-I is first enabled it will log the data to replicate to the sl_log_1 table. After a while it will stop logging to sl_log_1
and switch to logging in sl_log_2. When all the data in sl_log_1 is known to have been replicated to all the other nodes, Slony-I

Slony-I 2.1.4 Documentation 31 / 263

will TRUNCATE the sl_log_1 table, clearing out this now-obsolete replication data. Then, it stops logging to sl_log_2, switching
back to logging to the freshly truncated sl_log_1 table. This process is repeated periodically as Slony-I runs, keeping these tables
from growing uncontrollably. By using TRUNCATE, we guarantee that the tables are properly emptied out.

4.1.4 Slonik and Event Confirmations

slonik(1) can submit configuration commands to different event nodes, as controlled by the parameters of each slonik command.
If two commands are submitted to different nodes, it might be important to ensure they are processed by other nodes in a
consistent order. The slonik(1) SLONIK WAIT FOR EVENT(7) command may be used to accomplish this, but as of Slony-I 2.1
this consistency is handled automatically by slonik(1) under a number of circumstances.

1. Before slonik submits an event to a node, it waits until that node has confirmed the last configuration event from the
previous event node.

2. Before slonik submits a SLONIK SUBSCRIBE SET(7) command, it verifies that the provider node has confirmed all
configuration events from all other nodes.

3. Before slonik(1) submits a SLONIK DROP NODE(7) event, it verifies that all nodes in the cluster (aside from the one
being dropped, of course!) have already caught up with all other nodes

4. Before slonik submits a SLONIK CLONE PREPARE(7) it verifies that the node being cloned is caught up with all other
nodes in the cluster.

5. Before slonik submits a SLONIK CREATE SET(7) command it verifies that any SLONIK DROP SET(7) commands have
been confirmed by all nodes.

When slonik(1) starts up, it contacts all nodes for which it has SLONIK ADMIN CONNINFO(7) information, to find the last non-
SYNC event from each node. Submitting commands from multiple slonik(1) instances at the same time will confuse slonik(1)
and is not recommended. Whenever slonik(1) is waiting for an event confirmation, it displays a message every 10 seconds
indicating which events are still outstanding. Any commands that might require slonik to wait for event confirmations may not
be validly executed within a try block for the very same reasons that SLONIK WAIT FOR EVENT(7) command may not be used
within a try block, namely that it is not reasonable to ask Slony-I to try to roll back events.

Automatic waiting for confirmations may be disabled in slonik(1) by running slonik(1) with the -w option.

4.2 Slony-I Listen Paths

Note
If you are running version Slony-I 1.1 or later it should be completely unnecessary to read this section as it introduces a way to
automatically manage this part of its configuration. For earlier versions, however, it is needful.

If you have more than two or three nodes, and any degree of usage of cascaded subscribers (e.g. - subscribers that are subscribing
through a subscriber node), you will have to be fairly careful about the configuration of “listen paths” via the Slonik SLONIK
STORE LISTEN(7) and SLONIK DROP LISTEN(7) statements that control the contents of the table sl_listen.

The “listener” entries in this table control where each node expects to listen in order to get events propagated from other nodes.
You might think that nodes only need to listen to the “parent” from whom they are getting updates, but in reality, they need to
be able to receive messages from all nodes in order to be able to conclude that syncs have been received everywhere, and that,
therefore, entries in sl_log_1 and sl_log_2 have been applied everywhere, and can therefore be purged. this extra communication
is needful so Slony-I is able to shift origins to other locations.

Slony-I 2.1.4 Documentation 32 / 263

4.2.1 How Listening Can Break

On one occasion, I had a need to drop a subscriber node (#2) and recreate it. That node was the data provider for another
subscriber (#3) that was, in effect, a “cascaded slave.” Dropping the subscriber node initially didn’t work, as slonik(1) informed
me that there was a dependant node. I re-pointed the dependant node to the “master” node for the subscription set, which, for a
while, replicated without difficulties.

I then dropped the subscription on “node 2”, and started resubscribing it. that raised the Slony-I set_subscription event, which
started copying tables. at that point in time, events stopped propagating to “node 3”, and while it was in perfectly ok shape, no
events were making it to it.

The problem was that node #3 was expecting to receive events from node #2, which was busy processing the set_subscription
event, and was not passing anything else on.

We dropped the listener rules that caused node #3 to listen to node 2, replacing them with rules where it expected its events to
come from node #1 (the origin node for the replication set). At that moment, “as if by magic”, node #3 started replicating again,
as it discovered a place to get sync events.

4.2.2 How the Listen Configuration Should Look

The simple cases tend to be simple to cope with. We need to instead look at a more complex node configuration.

Consider a set of nodes, 1 thru 6, where 1 is the origin, where 2-4 subscribe directly to the origin, and where 5 subscribes to 2,
and 6 subscribes to 5.

Here is a “listener network” that indicates where each node should listen for messages coming from each other node:

1| 2| 3| 4| 5| 6|
--

1 0 2 3 4 2 2
2 1 0 1 1 5 5
3 1 1 0 1 1 1
4 1 1 1 0 1 1
5 2 2 2 2 0 6
6 5 5 5 5 5 0

Row 2 indicates all of the listen rules for node 2; it gets events for nodes 1, 3, and 4 through node 1, and gets events for nodes 5
and 6 from node 5.

The row of 5’s at the bottom, for node 6, indicate that node 6 listens to node 5 to get events from nodes 1-5.

The set of slonik set listen statements to express this “listener network” are as follows:

store listen (origin = 1, receiver = 2, provider = 1);
store listen (origin = 1, receiver = 3, provider = 1);
store listen (origin = 1, receiver = 4, provider = 1);
store listen (origin = 1, receiver = 5, provider = 2);
store listen (origin = 1, receiver = 6, provider = 5);
store listen (origin = 2, receiver = 1, provider = 2);
store listen (origin = 2, receiver = 3, provider = 1);
store listen (origin = 2, receiver = 4, provider = 1);
store listen (origin = 2, receiver = 5, provider = 2);
store listen (origin = 2, receiver = 6, provider = 5);
store listen (origin = 3, receiver = 1, provider = 3);
store listen (origin = 3, receiver = 2, provider = 1);
store listen (origin = 3, receiver = 4, provider = 1);
store listen (origin = 3, receiver = 5, provider = 2);
store listen (origin = 3, receiver = 6, provider = 5);
store listen (origin = 4, receiver = 1, provider = 4);
store listen (origin = 4, receiver = 2, provider = 1);
store listen (origin = 4, receiver = 3, provider = 1);
store listen (origin = 4, receiver = 5, provider = 2);
store listen (origin = 4, receiver = 6, provider = 5);

Slony-I 2.1.4 Documentation 33 / 263

store listen (origin = 5, receiver = 1, provider = 2);
store listen (origin = 5, receiver = 2, provider = 5);
store listen (origin = 5, receiver = 3, provider = 1);
store listen (origin = 5, receiver = 4, provider = 1);
store listen (origin = 5, receiver = 6, provider = 5);
store listen (origin = 6, receiver = 1, provider = 2);
store listen (origin = 6, receiver = 2, provider = 5);
store listen (origin = 6, receiver = 3, provider = 1);
store listen (origin = 6, receiver = 4, provider = 1);
store listen (origin = 6, receiver = 5, provider = 6);

How we read these listen statements is thus...

When on the “receiver” node, look to the “provider” node to provide events coming from the “origin” node.

The tool init_cluster in the altperl scripts produces optimized listener networks in both the tabular form shown above
as well as in the form of slonik(1) statements.

There are three “thorns” in this set of roses:

• If you change the shape of the node set, so that the nodes subscribe differently to things, you need to drop sl_listen entries and
create new ones to indicate the new preferred paths between nodes. Until Slony-I 1.1;, there is no automated way at this point
to do this “reshaping”.

• If you don’t change the sl_listen entries, events will likely continue to propagate so long as all of the nodes continue to run
well. the problem will only be noticed when a node is taken down, “orphaning” any nodes that are listening through it.

• you might have multiple replication sets that have different shapes for their respective trees of subscribers. there won’t be a
single “best” listener configuration in that case.

• In order for there to be an sl_listen path, there must be a series of sl_path entries connecting the origin to the receiver. this
means that if the contents of sl_path do not express a “connected” network of nodes, then some nodes will not be reachable.
this would typically happen, in practice, when you have two sets of nodes, one in one subnet, and another in another subnet,
where there are only a couple of “firewall” nodes that can talk between the subnets. cut out those nodes and the subnets stop
communicating.

4.2.3 Automated Listen Path Generation

In Slony-I version 1.1, a heuristic scheme is introduced to automatically generate sl_listen entries. This happens, in order,
based on three data sources:

• sl_subscribe entries are the first, most vital control as to what listens to what; we know there must be a direct path between
each subscriber node and its provider.

• sl_path entries are the second indicator; if sl_subscribe has not already indicated “how to listen,” then a node may listen directly
to the event’s origin if there is a suitable sl_path entry.

• Lastly, if there has been no guidance thus far based on the above data sources, then nodes can listen indirectly via every node
that is either a provider for the receiver, or that is using the receiver as a provider.

Any time sl_subscribe or sl_path are modified, RebuildListenEntries() will be called to revise the listener paths.

4.3 Slony-I Trigger Handling

In PostgreSQL version 8.3, new functionality was added where triggers and rules may have their behaviour altered via ALTER
TABLE, to specify the following alterations:

• DISABLE TRIGGER trigger_name

Slony-I 2.1.4 Documentation 34 / 263

• ENABLE TRIGGER trigger_name

• ENABLE REPLICA TRIGGER trigger_name

• ENABLE ALWAYS TRIGGER trigger_name

• DISABLE RULE rewrite_rule_name

• ENABLE RULE rewrite_rule_name

• ENABLE REPLICA RULE rewrite_rule_name

• ENABLE ALWAYS RULE rewrite_rule_name

A new GUC variable, session_replication_role controls whether the session is in origin, replica, or local
mode, which then, in combination with the above enabling/disabling options, controls whether or not the trigger function actually
runs.

We may characterize when triggers fire, under Slony-I replication, based on the following table; the same rules apply to Post-
greSQL rules.

Trigger Form When
Established Log Trigger denyaccess

Trigger
Action -
origin

Action -
replica Action - local

DISABLE
TRIGGER User request disabled on

subscriber
enabled on
subscriber does not fire does not fire does not fire

ENABLE
TRIGGER Default enabled on

subscriber
disabled on
subscriber fires does not fire fires

ENABLE
REPLICA
TRIGGER

User request inappropriate inappropriate does not fire fires does not fire

ENABLE
ALWAYS
TRIGGER

User request inappropriate inappropriate fires fires fires

Table 4.1: Trigger Behaviour

There are, correspondingly, now, several ways in which Slony-I interacts with this. Let us outline those times that are interesting:

• Before replication is set up, every database starts out in “origin” status, and, by default, all triggers are of the ENABLE
TRIGGER form, so they all run, as is normal in a system uninvolved in replication.

• When a Slony-I subscription is set up, on the origin node, both the logtrigger and denyaccess triggers are added, the
former being enabled, and running, the latter being disabled, so it does not run.

From a locking perspective, each SLONIK SET ADD TABLE(7) request will need to briefly take out an exclusive lock on
each table as it attaches these triggers, which is much the same as has always been the case with Slony-I.

• On the subscriber, the subscription process will add the same triggers, but with the polarities “reversed”, to protect data from
accidental corruption on subscribers.

From a locking perspective, again, there is not much difference from earlier Slony-I behaviour, as the subscription process, due
to running TRUNCATE, copying data, and altering table schemas, requires extensive exclusive table locks, and the changes in
trigger behaviour do not change those requirements.

• If you restore a backup of a Slony-I node (taken by pg_dump or any other method), and drop the Slony-I namespace, this now
cleanly removes all Slony-I components, leaving the database, including its schema, in a “pristine”, consistent fashion, ready
for whatever use may be desired.

• Section 3.3 is now performed in quite a different way: rather than altering each replicated table to “take it out of replicated
mode”, Slony-I instead simply shifts into the local status for the duration of this event.

On the origin, this deactivates the logtrigger trigger.

On each subscriber, this deactivates the denyaccess trigger.

Slony-I 2.1.4 Documentation 35 / 263

• At the time of invoking SLONIK MOVE SET(7) against the former origin, Slony-I must transform that node into a subscriber,
which requires dropping the lockset triggers, disabling the logtrigger triggers, and enabling the denyaccess triggers.

At about the same time, when processing SLONIK MOVE SET(7) against the new origin, Slony-I must transform that node
into an origin, which requires disabling the formerly active denyaccess triggers, and enabling the logtrigger triggers.

From a locking perspective Slony-I will need to take out exclusive locks to disable and enable the respective triggers.

• Similarly to SLONIK MOVE SET(7), SLONIK FAILOVER(7) transforms a subscriber node into an origin, which requires
disabling the formerly active denyaccess triggers, and enabling the logtrigger triggers. The locking implications are
again, much the same, requiring an exclusive lock on each such table.

4.3.1 TRUNCATE in PostgreSQL 8.4+

In PostgreSQL 8.4, triggers were augmented to support the TRUNCATE event. Thus, one may create a trigger which runs when
one requests TRUNCATE on a table, as follows:

create trigger "_@CLUSTERNAME@_truncatetrigger"
before truncate on my_table
for each statement
execute procedure @NAMESPACE@.log_truncate(22);

Slony-I supports this on nodes running PostgreSQL 8.4 and above, as follows:

• Tables have an additional two triggers attached to them:

– log_truncate(tab_id)

Running on the origin, this captures TRUNCATE requests, and stores them in sl_log_1 and sl_log_2 so that they are applied
at the appropriate point on subscriber nodes.

– truncate_deny()

Running on subscriber nodes, this forbids running TRUNCATE directly against replicated tables on these nodes, in much
the same way denyAccess() forbids running INSERT/UPDATE/DELETE directly against replicated tables.

• For each table, the command TRUNCATE TABLE ONLY my_schema.my_table CASCADE; is submitted.

Various options were considered (see Bugzilla Bug #134), after which CASCADE was concluded to be the appropriate answer.

Warning
If you have a subscriber node where additional tables have gotten attached via foreign keys to a replicated table, then
running TRUNCATE against that parent table will also TRUNCATE all the children.
Of course, it should be observed that this was a terribly dangerous thing to have done because deleting data from
the parent table would already either:

– Lead to deleting data from the child tables, this meaning the addition of TRUNCATE support is really no change at
all;

– Lead to foreign keys being broken on the subscriber, causing replication to keel over.

(In effect, we’re not really worsening things.)

• Note that if a request truncates several tables (e.g. - as where a table has a hierachy of children), then a request will be logged in
sl_log_1/sl_log_2 for each table, and the TRUNCATE CASCADE will effectively mean that the child tables will be truncated,
first indirectly, then directly. If there is a hierarchy of 3 tables, t1, t2, and t3, then t3 will get truncated three times. It’s
empty after the first TRUNCATE, so additional iterations will be cheap.

• If mixing PostgreSQL 8.3 and higher versions within a cluster:

– PostgreSQL 8.3 nodes will not capture TRUNCATE requests, neither to log the need to propagate the TRUNCATE, nor to
prevent it, on either origin or replica.

– PostgreSQL 8.4 nodes do capture TRUNCATE requests for both purposes.
– If a PostgreSQL 8.4+ node captures a TRUNCATE request, it will apply fine against a subscriber running PostgreSQL 8.3.

http://www.slony.info/bugzilla/show_bug.cgi?id=134

Slony-I 2.1.4 Documentation 36 / 263

4.4 Locking Issues

One of the usual merits of the use, by PostgreSQL, of Multi-Version Concurrency Control (MVCC) is that this eliminates a whole
host of reasons to need to lock database objects. On some other database systems, you need to acquire a table lock in order to
insert data into the table; that can severely hinder performance. On other systems, read locks can impede writes; with MVCC,
PostgreSQL eliminates that whole class of locks in that “old reads” can access “old tuples.” Most of the time, this allows the
gentle user of PostgreSQL to not need to worry very much about locks. Slony-I configuration events normally grab locks on an
internal table, sl_config_lock, which should not be visible to applications unless they are performing actions on Slony-I
components.

Unfortunately, there are several sorts of Slony-I events that do require exclusive locks on PostgreSQL tables, with the result that
modifying Slony-I configuration can bring back some of those “locking irritations.” In particular:

• set add table

A momentary exclusive table lock must be acquired on the “origin” node in order to add the trigger that collects updates for
that table. It only needs to be acquired long enough to establish the new trigger.

• move set

When a set origin is shifted from one node to another, exclusive locks must be acquired on each replicated table on both the
old origin and the new origin in order to change the triggers on the tables.

• lock set

This operation expressly requests locks on each of the tables in a given replication set on the origin node.

• During the SUBSCRIBE_SET event on a new subscriber.

all tables in the replication set will be locked via an exclusive lock for the entire duration of the process of subscription. By
locking the tables early, this means that the subscription cannot fail after copying some of the data due to some other process
having held on to a table.

In any case, note that this one began with the wording “on a new subscriber.” The locks are applied on the new subscriber.
They are not applied on the provider or on the origin.

• Each time an event is generated (including SYNC events) Slony-I obtains an exclusive lock on the sl_event table long enough to
insert the event into sl_event. This is not normally an issue as Slony-I should be the only program using sl_event. However this
means that any non-slony transactions that read from sl_event can cause replication to pause. If you pg_dump your database
avoid dumping your Slony schemas or else pg_dump’s locking will compete with Slony’s own locking which could stop Slony
replication for the duration of the pg_dump. Exclude the Slony schemas from pg_dump with --exclude-schema=schemaname
to specifically exclude your Slony schema.

When Slony-I locks a table that a running application later tries to access the application will be blocked waiting for the lock. It
is also possible for a running application to create a deadlock situation with Slony-I when they each have obtained locks that the
other is waiting for.

Several possible solutions to this are:

• Announce an application outage to avoid deadlocks

If you can temporarily block applications from using the database, that will provide a window of time during which there is
nothing running against the database other than administrative processes under your control.

• Try the operation, hoping for things to work

Since nothing prevents applications from leaving access locks in your way, you may find yourself deadlocked. But if the
number of remaining locks are small, you may be able to negotiate with users to “get in edgewise.”

• Use pgpool

If you can use this or some similar “connection broker”, you may be able to tell the connection manager to stop using the
database for a little while, thereby letting it “block” the applications for you. What would be ideal would be for the connection
manager to hold up user queries for a little while so that the brief database outage looks, to them, like a period where things
were running slowly.

Slony-I 2.1.4 Documentation 37 / 263

• Rapid Outage Management

The following procedure may minimize the period of the outage:

– Modify pg_hba.conf so that only the slony user will have access to the database.

– Issue a kill -SIGHUP to the PostgreSQL postmaster.
This will not kill off existing possibly-long-running queries, but will prevent new ones from coming in. There is an applica-
tion impact in that incoming queries will be rejected until the end of the process.

– If “all looks good,” then it should be safe to proceed with the Slony-I operation.

– If some old query is lingering around, you may need to kill -SIGQUIT one of the PostgreSQL processes. This will restart
the backend and kill off any lingering queries. You probably need to restart the slon(1) processes that attach to the node.
At that point, it will be safe to proceed with the Slony-I operation; there will be no competing processes.

– Reset pg_hba.conf to allow other users in, and kill -SIGHUP the postmaster to make it reload the security configuration.

4.5 Log Shipping - Slony-I with Files

Slony-I has the ability to serialize the updates to go out into log files that can be kept in a spool directory.

The spool files could then be transferred via whatever means was desired to a “slave system,” whether that be via FTP, rsync, or
perhaps even by pushing them onto a 1GB “USB key” to be sent to the destination by clipping it to the ankle of some sort of
“avian transport” system.

There are plenty of neat things you can do with a data stream in this form, including:

• Replicating to nodes that aren’t securable

• Replicating to destinations where it is not possible to set up bidirection communications

• Supporting a different form of PITR (Point In Time Recovery) that filters out read-only transactions and updates to tables that
are not of interest.

• If some disaster strikes, you can look at the logs of queries in detail

This makes log shipping potentially useful even though you might not intend to actually create a log-shipped node.

• This is a really slick scheme for building load for doing tests

• We have a data “escrow” system that would become incredibly cheaper given log shipping

• You may apply triggers on the “disconnected node ” to do additional processing on the data

For instance, you might take a fairly “stateful” database and turn it into a “temporal” one by use of triggers that implement the
techniques described in [?] by Richard T. Snodgrass.

1. Where are the “spool files” for a subscription set generated?

Any slon subscriber node can generate them by adding the -a option.

Note
Notice that this implies that in order to use log shipping, you must have at least one subscriber node.

2. What takes place when a SLONIK FAILOVER(7)/ SLONIK MOVE SET(7) takes place?

Nothing special. So long as the archiving node remains a subscriber, it will continue to generate logs.

Warning
If the archiving node becomes the origin, on the other hand, it will continue to generate logs.

http://www.cs.arizona.edu/people/rts/

Slony-I 2.1.4 Documentation 38 / 263

3. What if we run out of “spool space”?

The node will stop accepting SYNCs until this problem is alleviated. The database being subscribed to will also fall
behind.

4. How do we set up a subscription?

The script in tools called slony1_dump.sh is a shell script that dumps the “present” state of the subscriber node. You
need to start the slon for the subscriber node with logging turned on. At any point after that, you can run slony1_dump.sh,
which will pull the state of that subscriber as of some SYNC event. Once the dump completes, all the SYNC logs generated
from the time that dump started may be added to the dump in order to get a “log shipping subscriber.”

5. What are the limitations of log shipping?

In the initial release, there are rather a lot of limitations. As releases progress, hopefully some of these limitations may be
alleviated/eliminated.

The log shipping functionality amounts to “sniffing” the data applied at a particular subscriber node. As a result, you must
have at least one “regular” node; you cannot have a cluster that consists solely of an origin and a set of “log shipping
nodes.”.

The “log shipping node” tracks the entirety of the traffic going to a subscriber. You cannot separate things out if there are
multiple replication sets.

The “log shipping node” presently only fully tracks SYNC events. This should be sufficient to cope with some changes
in cluster configuration, but not others. A number of event types are handled in such a way that log shipping copes with
them:

• SYNC events are, of course, handled.

• DDL_SCRIPT is handled.

• UNSUBSCRIBE_SET
This event, much like SUBSCRIBE_SET is not handled by the log shipping code. But its effect is, namely that SYNC
events on the subscriber node will no longer contain updates to the set.
Similarly, SET_DROP_TABLE, SET_DROP_SEQUENCE, SET_MOVE_TABLE, SET_MOVE_SEQUENCE, DROP_SET,
MERGE_SET, SUBSCRIBE_SET will be handled “apropriately”.

• The various events involved in node configuration are irrelevant to log shipping: STORE_NODE, ENABLE_NODE,
DROP_NODE, STORE_PATH, DROP_PATH, STORE_LISTEN, DROP_LISTEN

• Events involved in describing how particular sets are to be initially configured are similarly irrelevant: STORE_SET,
SET_ADD_TABLE, SET_ADD_SEQUENCE, STORE_TRIGGER, DROP_TRIGGER,

It would be nice to be able to turn a “log shipped” node into a fully communicating Slony-I node that you could failover
to. This would be quite useful if you were trying to construct a cluster of (say) 6 nodes; you could start by creating one
subscriber, and then use log shipping to populate the other 4 in parallel. This usage is not supported, but presumably one
could take an application outage and promote the log-shipping node to a normal slony node with the OMIT COPY option
of SUBSCRIBE SET.

4.5.1 Usage Hints

Note
Here are some more-or-less disorganized notes about how you might want to use log shipping...

• You don’t want to blindly apply SYNC files because any given SYNC file may not be the right one. If it’s wrong, then the
result will be that the call to setsyncTracking_offline() will fail, and your psql session will ABORT, and then
run through the remainder of that SYNC file looking for a COMMIT or ROLLBACK so that it can try to move on to the next
transaction.

But we know that the entire remainder of the file will fail! It is futile to go through the parsing effort of reading the remainder
of the file.

Better idea:

Slony-I 2.1.4 Documentation 39 / 263

– The table, on the log shipped node, tracks which log it most recently applied in table sl_archive_tracking.
Thus, you may predict the ID number of the next file by taking the latest counter from this table and adding 1.

– There is still variation as to the filename, depending on what the overall set of nodes in the cluster are. All nodes periodically
generate SYNC events, even if they are not an origin node, and the log shipping system does generate logs for such events.
As a result, when searching for the next file, it is necessary to search for files in a manner similar to the following:

ARCHIVEDIR=/var/spool/slony/archivelogs/node4
SLONYCLUSTER=mycluster
PGDATABASE=logshipdb
PGHOST=logshiphost
NEXTQUERY="select at_counter+1 from \"_${SLONYCLUSTER}\".sl_archive_tracking;"
nextseq=‘psql -d ${PGDATABASE} -h ${PGHOST} -A -t -c "${NEXTQUERY}"
filespec=‘printf "slony1_log_*_%20d.sql"
for file in ‘find $ARCHIVEDIR -name "${filespec}"; do

psql -d ${PGDATABASE} -h ${PGHOST} -f ${file}
done

–

4.5.2 find-triggers-to-deactivate.sh

It was once pointed out (Bugzilla bug #19) that the dump of a schema may include triggers and rules that you may not wish to
have running on the log shipped node.

The tool tools/find-triggers-to-deactivate.sh was created to assist with this task. It may be run against the
node that is to be used as a schema source, and it will list the rules and triggers present on that node that may, in turn need to be
deactivated.

It includes logtrigger and denyaccess triggers which will may be left out of the extracted schema, but it is still worth the
Gentle Administrator verifying that such triggers are kept out of the log shipped replica.

4.5.3 slony_logshipper Tool

As of version 1.2.12, Slony-I has a tool designed to help apply logs, called slony_logshipper. It is run with three sorts of
parameters:

• Options, chosen from the following:

– h

display this help text and exit

– v

display program version and exit

– q

quiet mode

– l

cause running daemon to reopen its logfile

– r

cause running daemon to resume after error

– t

cause running daemon to enter smart shutdown mode

– T

cause running daemon to enter immediate shutdown mode

– c

destroy existing semaphore set and message queue (use with caution)

http://www.slony.info/bugzilla/show_bug.cgi?id=19

Slony-I 2.1.4 Documentation 40 / 263

– f

stay in foreground (don’t daemonize)

– w

enter smart shutdown mode immediately

• A specified log shipper configuration file

This configuration file consists of the following specifications:

– logfile = ’./offline_logs/logshipper.log’;
Where the log shipper will leave messages.

– cluster name = ’T1’;
Cluster name

– destination database = ’dbname=slony_test3’;
Optional conninfo for the destination database. If given, the log shipper will connect to this database, and apply logs to it.

– archive dir = ’./offline_logs’;
The archive directory is required when running in “database-connected” mode to have a place to scan for missing (unapplied)
archives.

– destination dir = ’./offline_result’;
If specified, the log shipper will write the results of data massaging into result logfiles in this directory.

– max archives = 3600;
This fights eventual resource leakage; the daemon will enter “smart shutdown” mode automatically after processing this
many archives.

– ignore table "public"."history";
One may filter out single tables from log shipped replication

– ignore namespace "public";
One may filter out entire namespaces from log shipped replication

– rename namespace "public"."history" to "site_001"."history";
One may rename specific tables.

– rename namespace "public" to "site_001";
One may rename entire namespaces.

– post processing command = ’gzip -9 $inarchive’;
Pre- and post-processing commands are executed via system(3).

An “@” as the first character causes the exit code to be ignored. Otherwise, a nonzero exit code is treated as an error and
causes processing to abort.

Pre- and post-processing commands have two further special variables defined:

– $inarchive - indicating incoming archive filename

– $outnarchive - indicating outgoing archive filename

• error command = ’ (echo "archive=$inarchive" echo "error messages:" echo "$errortext") | mail -s "Slony log shipping
failed" postgres@localhost ’;
The error command indicates a command to execute upon encountering an error. All logging since the last successful comple-
tion of an archive is available in the $errortext variable.

In the example shown, this sends an email to the DBAs upon encountering an error.

• Archive File Names

Each filename is added to the SystemV Message queue for processing by a slony_logshipper process.

Slony-I 2.1.4 Documentation 41 / 263

Chapter 5

Deployment Considerations

5.1 Cluster Monitoring

As a prelude to the discussion, it is worth pointing out that since the bulk of Slony-I functionality is implemented via running
database functions and SQL queries against tables within a Slony-I schema, most of the things that one might want to monitor
about replication may be found by querying tables in the schema created for the cluster in each database in the cluster.

Here are some of the tables that contain information likely to be particularly interesting from a monitoring and diagnostic
perspective.

sl_status

This view is the first, most obviously useful thing to look at from a monitoring perspective. It looks at the local node’s
events, and checks to see how quickly they are being confirmed on other nodes.

The view is primarily useful to run against an origin (“master”) node, as it is only there where the events generated are
generally expected to require interesting work to be done. The events generated on non-origin nodes tend to be SYNC
events that require no replication work be done, and that are nearly no-ops, as a result.

sl_confirm
Contains confirmations of replication events; this may be used to infer which events have, and have not been processed.

sl_event
Contains information about the replication events processed on the local node.

sl_log_1 and sl_log_2
These tables contain replicable data. On an origin node, this is the “queue” of data that has not necessarily been replicated
everywhere. By examining the table, you may examine the details of what data is replicable.

sl_node
The list of nodes in the cluster.

sl_path
This table holds connection information indicating how slon(1) processes are to connect to remote nodes, whether to access
events, or to request replication data.

sl_listen
This configuration table indicates how nodes listen for events coming from other nodes. Usually this is automatically
populated; generally you can detect configuration problems by this table being “underpopulated.”

sl_registry
A configuration table that may be used to store miscellaneous runtime data. Presently used only to manage switching
between the two log tables.

Slony-I 2.1.4 Documentation 42 / 263

sl_seqlog
Contains the “last value” of replicated sequences.

sl_set
Contains definition information for replication sets, which is the mechanism used to group together related replicable tables
and sequences.

sl_setsync
Contains information about the state of synchronization of each replication set, including transaction snapshot data.

sl_subscribe
Indicates what subscriptions are in effect for each replication set.

sl_table
Contains the list of tables being replicated.

5.1.1 test_slony_state

This invaluable script does various sorts of analysis of the state of a Slony-I cluster. Some administrators recommend running
these scripts frequently (hourly seems suitable) to find problems as early as possible.

You specify arguments including database, host, user, cluster, password, and port to connect to any of the nodes
on a cluster. You also specify a mailprog command (which should be a program equivalent to Unix mailx) and a recipient of
email.

You may alternatively specify database connection parameters via the environment variables used by libpq, e.g. - using PGPORT,
PGDATABASE, PGUSER, PGSERVICE, and such.

The script then rummages through sl_path to find all of the nodes in the cluster, and the DSNs to allow it to, in turn, connect to
each of them.

For each node, the script examines the state of things, including such things as:

• Checking sl_listen for some “analytically determinable” problems. It lists paths that are not covered.

• Providing a summary of events by origin node

If a node hasn’t submitted any events in a while, that likely suggests a problem.

• Summarizes the “aging” of table sl_confirm

If one or another of the nodes in the cluster hasn’t reported back recently, that tends to lead to cleanups of tables like sl_log_1,
sl_log_2 and sl_seqlog not taking place.

• Summarizes what transactions have been running for a long time

This only works properly if the statistics collector is configured to collect command strings, as controlled by the option sta
ts_command_string =true in postgresql.conf .

If you have broken applications that hold connections open, this will find them.

If you have broken applications that hold connections open, that has several unsalutory effects as described in the FAQ.

The script does some diagnosis work based on parameters in the script; if you don’t like the values, pick your favorites!

Note
Note that there are two versions, one using the “classic” Pg.pm Perl module for accessing PostgreSQL databases, and one,
with dbi in its name, that uses the newer Perl DBI interface. It is likely going to be easier to find packaging for DBI.

Slony-I 2.1.4 Documentation 43 / 263

5.1.2 Nagios Replication Checks

The script in the tools directory called psql_replication_check.pl represents some of the best answers arrived at in attempts
to build replication tests to plug into the Nagios system monitoring tool.

A former script, test_slony_replication.pl, took a “clever” approach where a “test script” is periodically run, which
rummages through the Slony-I configuration to find origin and subscribers, injects a change, and watches for its propagation
through the system. It had two problems:

• Connectivity problems to the single host where the test ran would make it look as though replication was destroyed. Overall,
this monitoring approach has been fragile to numerous error conditions.

• Nagios has no ability to benefit from the “cleverness” of automatically exploring the set of nodes. You need to set up a Nagios
monitoring rule for each and every node being monitored.

The new script, psql_replication_check.pl, takes the minimalist approach of assuming that the system is an online system that
sees regular “traffic,” so that you can define a view specifically for the replication test called replication_status which is
expected to see regular updates. The view simply looks for the youngest “transaction” on the node, and lists its timestamp, age,
and some bit of application information that might seem useful to see.

• In an inventory system, that might be the order number for the most recently processed order.

• In a domain registry, that might be the name of the most recently created domain.

An instance of the script will need to be run for each node that is to be monitored; that is the way Nagios works.

5.1.3 Monitoring Slony-I using MRTG

One user reported on the Slony-I mailing list how to configure mrtg - Multi Router Traffic Grapher to monitor Slony-I replication.

... Since I use mrtg to graph data from multiple servers I use snmp (net-snmp to be exact). On database server, I added the
following line to snmpd configuration:

exec replicationLagTime /cvs/scripts/snmpReplicationLagTime.sh 2
where /cvs/scripts/snmpReplicationLagTime.sh looks like this:

#!/bin/bash
/home/pgdba/work/bin/psql -U pgdba -h 127.0.0.1 -p 5800 -d _DBNAME_ -qAt -c
"select cast(extract(epoch from st_lag_time) as int8) FROM _irr.sl_status
WHERE st_received = $1"

Then, in mrtg configuration, add this target:

Target[db_replication_lagtime]:extOutput.3&extOutput.3:public at db::30:::
MaxBytes[db_replication_lagtime]: 400000000
Title[db_replication_lagtime]: db: replication lag time
PageTop[db_replication_lagtime]: <H1>db: replication lag time</H1>
Options[db_replication_lagtime]: gauge,nopercent,growright

Alternatively, Ismail Yenigul points out how he managed to monitor slony using MRTG without installing SNMPD.

Here is the mrtg configuration

Target[db_replication_lagtime]:‘/bin/snmpReplicationLagTime.sh 2‘
MaxBytes[db_replication_lagtime]: 400000000
Title[db_replication_lagtime]: db: replication lag time
PageTop[db_replication_lagtime]: <H1>db: replication lag time</H1>
Options[db_replication_lagtime]: gauge,nopercent,growright

and here is the modified version of the script

http://www.nagios.org/
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

Slony-I 2.1.4 Documentation 44 / 263

cat /bin/snmpReplicationLagTime.sh
#!/bin/bash

output=‘/usr/bin/psql -U slony -h 192.168.1.1 -d endersysecm -qAt -c
"select cast(extract(epoch from st_lag_time) as int8) FROM _mycluster.sl_status WHERE ←↩

st_received = $1"‘
echo $output
echo $output
echo
echo
end of script#

Note
MRTG expects four lines from the script, and since there are only two lines provided, the output must be padded to four lines.

5.1.4 Bucardo-related Monitoring

The Bucardo replication system includes script, check_postgres.pl, which can monitor a variety of things about PostgreSQL
status that includes monitoring Slony-I replication status; see check_postgres.pl - slony_status

5.1.5 search-logs.sh

This script is constructed to search for Slony-I log files at a given path (LOGHOME), based both on the naming conventions used
by the Section 6.1.4 and Section 6.1.1.20 systems used for launching slon(1) processes.

Errors, if found, are listed, by log file, and emailed to the specified user (LOGRECIPIENT); if no email address is specified,
output goes to standard output.

LOGTIMESTAMP allows overriding what hour to evaluate (rather than the last hour).

An administrator might run this script once an hour to monitor for replication problems.

5.1.6 Building MediaWiki Cluster Summary

The script mkmediawiki.pl , in tools, may be used to generate a cluster summary compatible with the popular MediaWiki
software. Note that the --categories permits the user to specify a set of (comma-delimited) categories with which to

associate the output. If you have a series of Slony-I clusters, passing in the option --categories=slony1 leads to the
MediaWiki instance generating a category page listing all Slony-I clusters so categorized on the wiki.

The gentle user might use the script as follows:

~/logtail.en> mvs login -d mywiki.example.info -u "Chris Browne" -p ‘cat ~/. ←↩
wikipass‘ -w wiki/index.php

Doing login with host: logtail and lang: en
~/logtail.en> perl $SLONYHOME/tools/mkmediawiki.pl --host localhost --database ←↩

slonyregress1 --cluster slony_regress1 --categories=Slony-I > Slony_replication.wiki
~/logtail.en> mvs commit -m "More sophisticated generated Slony-I cluster docs" ←↩

Slony_replication.wiki
Doing commit Slony_replication.wiki with host: logtail and lang: en

Note that mvs is a client written in Perl; on Debian GNU/Linux, the relevant package is called libwww-mediawiki-client-perl;
other systems may have a packaged version of this under some similar name.

http://bucardo.org/
http://bucardo.org/check_postgres/check_postgres.pl.html#slony_status
http://www.mediawiki.org/
http://www.mediawiki.org/
http://www.debian.org/

Slony-I 2.1.4 Documentation 45 / 263

5.1.7 Analysis of a SYNC

The following is (as of 2.0) an extract from the slon(1) log for node #2 in a run of “test1” from the regression tests.

DEBUG2 remoteWorkerThread_1: SYNC 19 processing
INFO about to monitor_subscriber_query - pulling big actionid list 134885072
INFO remoteWorkerThread_1: syncing set 1 with 4 table(s) from provider 1
DEBUG2 ssy_action_list length: 0
DEBUG2 remoteWorkerThread_1: current local log_status is 0
DEBUG2 remoteWorkerThread_1_1: current remote log_status = 0
DEBUG1 remoteHelperThread_1_1: 0.028 seconds delay for first row
DEBUG1 remoteHelperThread_1_1: 0.978 seconds until close cursor
INFO remoteHelperThread_1_1: inserts=144 updates=1084 deletes=0
INFO remoteWorkerThread_1: sync_helper timing: pqexec (s/count)- provider 0.063/6 - ←↩

subscriber 0.000/6
INFO remoteWorkerThread_1: sync_helper timing: large tuples 0.315/288
DEBUG2 remoteWorkerThread_1: cleanup
INFO remoteWorkerThread_1: SYNC 19 done in 1.272 seconds
INFO remoteWorkerThread_1: SYNC 19 sync_event timing: pqexec (s/count)- provider 0.001/1 ←↩

- subscriber 0.004/1 - IUD 0.972/248

Here are some notes to interpret this output:

• Note the line that indicates

inserts=144 updates=1084 deletes=0

This indicates how many tuples were affected by this particular SYNC.

• Note the line indicating

0.028 seconds delay for first row

This indicates the time it took for the

LOG
cursor

to get to the point of processing the first row of data. Normally, this takes a long time if the SYNC is a large one, and one
requiring sorting of a sizable result set.

• Note the line indicating

0.978 seconds until
close cursor

This indicates how long processing took against the provider.

• sync_helper timing: large tuples 0.315/288

This breaks off, as a separate item, the number of large tuples (e.g. - where size exceeded the configuration parameter
sync_max_rowsize) and where the tuples had to be processed individually.

•
SYNC 19 done in 1.272 seconds

This indicates that it took 1.272 seconds, in total, to process this set of SYNCs.
•
SYNC 19 sync_event timing: pqexec (s/count)- provider 0.001/1 - subscriber 0.004/0 - IUD ←↩

0.972/248

This records information about how many queries were issued against providers and subscribers in function sync_event(),
and how long they took.

Note that 248 does not match against the numbers of inserts, updates, and deletes, described earlier, as I/U/D requests are
clustered into groups of queries that are submitted via a single pqexec() call on the subscriber.

Slony-I 2.1.4 Documentation 46 / 263

•
sync_helper timing: pqexec (s/count)- provider 0.063/6 - subscriber 0.000/6

This records information about how many queries were issued against providers and subscribers in function sync_helpe
r(), and how long they took.

5.2 Component Monitoring

There are several ways available to see what Slony-I processes are up to:

• Section 5.2.1

• Section 5.2.2

5.2.1 Looking at pg_stat_activity view

The standard PostgreSQL view pg_stat_activity indicates what the various database connections are up to.

On recent versions of PostgreSQL, this view includes an attribute, application_name, which Slony-I components populate
based on the names of their respective threads.

5.2.2 Looking at sl_components view

Slony-I has a table, sl_components, introduced in Slony-I 2.1, which captures Slony-I activity for each node.

slonyregress1@localhost-> select * from _slony_regress1.sl_components order by co_actor;
co_actor | co_pid | co_node | co_connection_pid | co_activity | ←↩

co_starttime | co_event | co_eventtype
----------------------+--------+---------+-------------------+------------------+------------------------+----------+-------------- ←↩

local_cleanup | 24586 | 0 | 24907 | thread main loop | ←↩
2011-02-24 17:02:55+00 | | n/a

local_listen | 24896 | 1 | 24900 | thread main loop | ←↩
2011-02-24 17:03:07+00 | | n/a

local_monitor | 24586 | 0 | 24909 | thread main loop | ←↩
2011-02-24 17:02:55+00 | | n/a

local_sync | 24517 | 0 | 24906 | thread main loop | ←↩
2011-02-24 17:03:09+00 | | n/a

remote listener | 24586 | 2 | 24910 | thread main loop | ←↩
2011-02-24 17:03:03+00 | | n/a

remoteWorkerThread_2 | 24586 | 2 | 24908 | thread main loop | ←↩
2011-02-24 17:02:55+00 | | n/a

(6 rows)

This example indicates the various Slony-I threads that are typically running as part of a slon(1) process:

local_cleanup
This thread periodically wakes up to trim obsolete data and (optionally) vacuum Slony-I tables

local_listen
This thread listens for events taking place on the local node, and changes the slon(1)’s configuration as needed.

local_monitor
This thread is rather self-referential, here; it manages the queue of events to be published to the sl_components table.

Slony-I 2.1.4 Documentation 47 / 263

local_sync
This thread generates SYNC events on the local database. If the local database is the origin for a replication set, those
SYNC events are used to propagate changes to other nodes in the cluster.

remote_listener
This thread listens for events on a remote node database, and queues them into the remote worker thread for that node.

remoteWorkerThread_2
This thread waits for events (from the remote listener thread), and takes action. This is the thread that does most of the
visible work of replication.

5.2.3 Notes On Interpreting Component Activity

• Many of these will typically report, as their activity, thread main loop, which indicates that the thread exists, and is simply
executing its main loop, waiting to have work to do.

Most threads will never indicate an event or event type, as they do not process Slony-I events.

• local_monitor thread never reports any activity.

It would be a nice idea for this thread, which manages sl_components, to report in on its work. Unfortunately, the fact of
adding in its own events would make it perpetually busy, as the action of processing the queue would add a monitoring entry,
in effect becoming a repetitive recursive activity.

It does report in when it starts up, which means you may expect that this entry indicates the time at which the slon(1) process
began.

• Timestamps are based on the clock time of the slon(1) process.

In order for the timestamps to be accurate, it is important to use NTP or similar technology to keep servers’ clocks synchronized,
as recommended in Section 1.2. If the host where a slon(1) runs has its time significantly out of sync with the database that it
manages, queries against sl_components may provide results that will confuse the reader.

• process.

5.3 Partitioning Support

Slony-I does not directly provide support for the PostgreSQL methodology of partitioning via inheritance, but it does not, by the
same token, prevent the Gentle User from using that sort of replication scheme, and then replicating the underlying tables.

One of the tests in the regression tests called testinherit, tests that Slony-I behaves as expected to replicate data across
partitions. This test creates a master sales_data table, from which various children inherit:

• us_east

• us_west

• canada

The example is somewhat simplistic as it only provides rules to handle initial insertion into the respective partitions; it does not
then support allowing tuples to migrate from partition to partition if they are altered via an UPDATE statement. On the other
hand, unlike with many partitioning cases, this one permits the “parent” table to contain tuples.

Things worth observing include:

• Each partition table must be added to replication individually.

• Slony-I is not aware of the relationship between partitions; it simply regards them as a series of individual tables.

Slony-I 2.1.4 Documentation 48 / 263

5.3.1 Support for Dynamic Partition Addition

One common “use case” of replication is to partition large data sets based on time period, whether weekly, monthly, quarterly, or
annually, where there is therefore a need to periodically add a new partition.

The traditional approach taken to this in Slony-I would be the following:

• SLONIK EXECUTE SCRIPT(7) to add the new partition(s) on each node

• SLONIK CREATE SET(7) to create a temporary replication set

• SLONIK SET ADD TABLE(7) to add the table(s) to that set

• SLONIK SUBSCRIBE SET(7), once for each subscriber node, to set up replication of the table on each node

• SLONIK MERGE SET(7), once subscriptions are running, to eliminate the temporary set

In view of the fact that we can be certain that a thus-far-unused partition will be empty, we offer an alternative mechanism which
evades the need to create extra replication sets and the need to submit multiple SLONIK SUBSCRIBE SET(7) requests. The
alternative is as follows; we use SLONIK EXECUTE SCRIPT(7), extending the DDL script thus:

• Add the new partition(s) on each node

• Run a Slony-I stored function to mark the new partition as being a replicated table

On the origin node, if the table is found to have tuples in it, the DDL script will be aborted, as the precondition that it be empty
has been violated.

On subscriber nodes, we may safely TRUNCATE the new table.

There are several stored functions provided to support this; the Gentle User may use whichever seems preferable. The “base
function” is add_empty_table_to_replication(); the others provide additional structure and validation of the argu-
ments

• add_empty_table_to_replication (set_id, tab_id, nspname, tabname, idxname, comment);

This is the “base” function; you must specify the set ID, table ID, namespace name, table name, index name, and a comment,
and this table will be added to replication.

Note that the index name is optional; if NULL, the function will look up the primary key for the table, assuming one exists,
and fail if it does not exist.

• replicate_partition(tab_id, nspname, tabname, idxname, comment);

If it is known that the table to be replicated inherits from a replicated parent table, then this function can draw set and origin
information from that parent table.

Note
As has been observed previously, Slony-I is unaware that tables are partitioned. Therefore, this approach may also be used
with confidence to add any table to replication that is known to be empty.

5.4 Slony-I Upgrade

Minor Slony-I versions can be upgraded using the slonik SLONIK UPDATE FUNCTIONS(7) command. This includes upgrades
from 2.1.x to a newer version 2.1.y version or from 2.0.x to 2.1.y.

When upgrading Slony-I, the installation on all nodes in a cluster must be upgraded at once, using the slonik(1) command
SLONIK UPDATE FUNCTIONS(7).

While this requires temporarily stopping replication, it does not forcibly require an outage for applications that submit updates.

The proper upgrade procedure is thus:

Slony-I 2.1.4 Documentation 49 / 263

• Stop the slon(1) processes on all nodes. (e.g. - old version of slon(1))

• Install the new version of slon(1) software on all nodes.

• Execute a slonik(1) script containing the command update functions (id = [whatever]); for each node in the cluster.

Note
Remember that your slonik upgrade script like all other slonik scripts must contain the proper preamble commands to function.

• Start all slons.

The overall operation is relatively safe: If there is any mismatch between component versions, the slon(1) will refuse to start up,
which provides protection against corruption.

You need to be sure that the C library containing SPI trigger functions has been copied into place in the PostgreSQL build. There
are multiple possible approaches to this:

The trickiest part of this is ensuring that the C library containing SPI functions is copied into place in the PostgreSQL build;
the easiest and safest way to handle this is to have two separate PostgreSQL builds, one for each Slony-I version, where the
postmaster is shut down and then restarted against the “new” build; that approach requires a brief database outage on each node.

While that approach has been found to be easier and safer, nothing prevents one from carefully copying Slony-I components for
the new version into place to overwrite the old version as the “install” step. That might not work on Windows™ if it locks library
files that are in use. It is also important to make sure that any connections to the database are restarted after the new binary is
installed.

Run make install to install new Slony-I components on top of the old If you build Slony-I on the same system on which it is
to be deployed, and build from sources, overwriting the old with the new is as easy as make install. There is no need to
restart a database backend; just to stop slon(1) processes, run the UPDATE FUNCTIONS script, and start new slon(1)
processes.

Unfortunately, this approach requires having a build environment on the same host as the deployment. That may not be
consistent with efforts to use common PostgreSQL and Slony-I binaries across a set of nodes.

Create a new PostgreSQL and Slony-I build With this approach, the old PostgreSQL build with old Slony-I components per-
sists after switching to a new PostgreSQL build with new Slony-I components. In order to switch to the new Slony-I build,
you need to restart the PostgreSQL postmaster, therefore interrupting applications, in order to get it to be aware of the
location of the new components.

5.4.1 Incompatibilties between 2.0 and 2.1

5.4.1.1 Automatic Wait For

Slonik will now sometimes wait for previously submitted events to be confirmed before submittng additional events. This is
described in Section 4.1

5.4.1.2 SNMP Support

In version 2.0 Slony-I could be built with SNMP support. This allowed Slony-I to send SNMP messages. This has been removed
in version 2.1

5.4.2 Incompatibilities between 1.2 and 2.0

5.4.2.1 TABLE ADD KEY issue in Slony-I 2.0

The TABLE ADD KEY slonik command has been removed in version 2.0. This means that all tables must have a set of columns
that form a unique key for the table. If you are upgrading from a previous Slony-I version and are using a Slony-I created primary
key then you will need to modify your table to have its own primary key before installing Slony-I version 2.0

Slony-I 2.1.4 Documentation 50 / 263

5.4.2.2 New Trigger Handling in Slony-I Version 2

One of the major changes to Slony-I is that enabling/disabling of triggers and rules now takes place as plain SQL, supported by
PostgreSQL 8.3+, rather than via “hacking” on the system catalog.

As a result, Slony-I users should be aware of the PostgreSQL syntax for ALTER TABLE, as that is how they can accomplish
what was formerly accomplished via SLONIK STORE TRIGGER(7) and SLONIK DROP TRIGGER(7).

5.4.2.3 SUBSCRIBE SET goes to the origin

New in 2.0.5 (but not older versions of 2.0.x) is that SLONIK SUBSCRIBE SET(7) commands are submitted by slonik to the set
origin not the provider. This means that you only need to issue SLONIK WAIT FOR EVENT(7) on the set origin to wait for the
subscription process to complete.

5.4.2.4 WAIT FOR EVENT requires WAIT ON

With version 2.0 the WAIT FOR EVENT slonik command requires that the WAIT ON parameter be specified. Any slonik scripts
that were assuming a default value will need to be modified

5.4.3 Upgrading to Slony-I version 2.1 from version 2.0

Slony-I version 2.0 can be upgraded to version 2.1 using the slonik(1) command SLONIK UPDATE FUNCTIONS(7).

While this requires temporarily stopping replication, it does not forcibly require an outage for applications that submit updates.

The proper upgrade procedure is thus:

• Stop the slon(1) processes on all nodes. (e.g. - old version of slon(1))

• Install the new version of Slony-I; software on all nodes (including new versions of the shared functions and libraries) .

• Execute a slonik(1) script containing the command update functions (id = [whatever]); for each node in the cluster. This will
alter the structure of some of the Slony-I configuration tables.

Note
Remember that your slonik upgrade script like all other slonik scripts must contain the proper preamble commands to function.

• Start all slons.

5.4.4 Upgrading to Slony-I version 2.1 from version 1.2 or earlier

The version 2 branch is substantially different from earlier releases, dropping support for versions of PostgreSQL prior to 8.3, as
in version 8.3, support for a “session replication role” was added, thereby eliminating the need for system catalog hacks as well
as the not-entirely-well-supported xxid data type.

As a result of the replacement of the xxid type with a (native-to-8.3) PostgreSQL transaction XID type, the slonik(1) command
SLONIK UPDATE FUNCTIONS(7) is quite inadequate to the process of upgrading earlier versions of Slony-I to version 2.

In version 2.0.2, we have added a new option to SLONIK SUBSCRIBE SET(7), OMIT COPY, which allows taking an alterna-
tive approach to upgrade which amounts to:

• Uninstall old version of Slony-I

When Slony-I uninstalls itself, catalog corruptions are fixed back up.

• Install Slony-I version 2

Slony-I 2.1.4 Documentation 51 / 263

• Resubscribe, with OMIT COPY

Warning
There is a large “foot gun” here: during part of the process, Slony-I is not installed in any form, and if an application
updates one or another of the databases, the resubscription, omitting copying data, will be left with data out of sync.
The administrator must take care; Slony-I has no way to help ensure the integrity of the data during this process.

The following process is suggested to help make the upgrade process as safe as possible, given the above risks.

• Use Section 6.1.10 to generate a slonik(1) script to recreate the replication cluster.

Be sure to verify the SLONIK ADMIN CONNINFO(7) statements, as the values are pulled are drawn from the PATH config-
uration, which may not necessarily be suitable for running slonik(1).

This step may be done before the application outage.

• Determine what triggers have SLONIK STORE TRIGGER(7) configuration on subscriber nodes.

Trigger handling has fundamentally changed between Slony-I 1.2 and 2.0.

Generally speaking, what needs to happen is to query sl_table on each node, and, for any triggers found in sl_table,
it is likely to be appropriate to set up a script indicating either ENABLE REPLICA TRIGGER or ENABLE ALWAYS
TRIGGER for these triggers.

This step may be done before the application outage.

• Begin an application outage during which updates should no longer be applied to the database.

• To ensure that applications cease to make changes, it would be appropriate to lock them out via modifications to pg_hba.
conf

• Ensure replication is entirely caught up, via examination of the sl_status view, and any application data that may seem
appropriate.

• Shut down slon(1) processes.

• Uninstall the old version of Slony-I from the database.

This involves running a slonik(1) script that runs SLONIK UNINSTALL NODE(7) against each node in the cluster.

• Ensure new Slony-I binaries are in place.

A convenient way to handle this is to have old and new in different directories alongside two PostgreSQL builds, stop the
postmaster, repoint to the new directory, and restart the postmaster.

• Run the script that reconfigures replication as generated earlier.

This script should probably be split into two portions to be run separately:

– Firstly, set up nodes, paths, sets, and such

– At this point, start up slon(1) processes

– Then, run the portion which runs SLONIK SUBSCRIBE SET(7)

Splitting the Section 6.1.10 script as described above is left as an exercise for the reader.

• If there were triggers that needed to be activated on subscriber nodes, this is the time to activate them.

• At this point, the cluster should be back up and running, ready to be reconfigured so that applications may access it again.

5.5 Log Analysis

Here are some of things that you may find in your Slony-I logs, and explanations of what they mean.

Slony-I 2.1.4 Documentation 52 / 263

5.5.1 CONFIG notices

These entries are pretty straightforward. They are informative messages about your configuration.

Here are some typical entries that you will probably run into in your logs:

CONFIG main: local node id = 1
CONFIG main: loading current cluster configuration
CONFIG storeNode: no_id=3 no_comment=’Node 3’
CONFIG storePath: pa_server=5 pa_client=1 pa_conninfo="host=127.0.0.1 dbname=foo user= ←↩

postgres port=6132" pa_connretry=10
CONFIG storeListen: li_origin=3 li_receiver=1 li_provider=3
CONFIG storeSet: set_id=1 set_origin=1 set_comment=’Set 1’
CONFIG main: configuration complete - starting threads

5.5.2 INFO notices

Events that take place that seem like they will generally be of interest are recorded at the INFO level, and, just as with CONFIG
notices, are always listed.

5.5.3 DEBUG Notices

Debug notices are of less interest, and will quite likely only need to be shown if you are running into some problem with Slony-I.

5.5.4 Thread name

Notices are always prefaced by the name of the thread from which the notice originates. You will see messages from the following
threads:

localListenThread This is the local thread that listens for events on the local node.

remoteWorkerThread-X The thread processing remote events. You can expect to see one of these for each node that this node
communicates with.

remoteListenThread-X Listens for events on a remote node database. You may expect to see one of these for each node in the
cluster.

cleanupThread Takes care of things like vacuuming, cleaning out the confirm and event tables, and deleting old data.

syncThread Generates SYNC events.

How much information they display is controlled by the log_level slon(1) parameter; ERROR/WARN/CONFIG/INFO mes-
sages will always be displayed, while choosing increasing values from 1 to 4 will lead to additional DEBUG level messages
being displayed.

5.5.5 How to read Slony-I logs

Note that as far as slon is concerned, there is no “master” or “slave.” They are just nodes.

What you can expect, initially, is to see, on both nodes, some events propagating back and forth. Firstly, there should be some
events published to indicate creation of the nodes and paths. If you don’t see those, then the nodes aren’t properly communicating
with one another, and nothing else will happen...

• Create the two nodes.

No slons are running yet, so there are no logs to look at.

Slony-I 2.1.4 Documentation 53 / 263

• Start the two slons

The logs for each will start out very quiet, as neither node has much to say, and neither node knows how to talk to another
node. Each node will periodically generate a SYNC event, but recognize nothing about what is going on on other nodes.

• Do the SLONIK STORE PATH(7) to set up communications paths. That will allow the nodes to start to become aware of one
another.

The slon logs should now start to receive events from “foreign” nodes.

If you look at the contents of the tables sl_node and sl_path and sl_listen, on each node, that should give a good idea as to
where things stand. Until the slon(1) starts, each node may only be partly configured. If there are two nodes, there should be
two entries in all three of these tables once the communications configuration is set up properly. If there are fewer entries than
that, well, that should give you some idea of what is missing.

• You’ll set up the set (SLONIK CREATE SET(7)), add tables (SLONIK SET ADD TABLE(7)), and sequences (SLONIK SET
ADD SEQUENCE(7)), and will see relevant events Section 5.5.6.7 only in the logs for the origin node for the set.

• Then, when you submit the SLONIK SUBSCRIBE SET(7) request, the event should go to both nodes.

The origin node has little more to do, after that... The subscriber will then have a COPY_SET event, which will lead to logging
information about adding each table and copying its data. See Section 5.5.6.4 for more details.

After that, you’ll mainly see two sorts of behaviour:

• On the origin, there won’t be too terribly much logged, just indication that some SYNC events are being generated and
confirmed by other nodes. See Section 5.5.6.6 to see the sorts of log entries to expect.

• On the subscriber, there will be reports of SYNC events, and that the subscriber pulls data from the provider for the relevant
set(s). This will happen infrequently if there are no updates going to the origin node; it will happen frequently when the origin
sees heavy updates.

5.5.6 Log Messages and Implications

This section lists numerous of the error messages found in Slony-I, along with a brief explanation of implications. It is a fairly
comprehensive list, only leaving out some of the DEBUG4 messages that are almost always uninteresting.

5.5.6.1 Log Messages Associated with Log Shipping

Most of these represent errors that come up if the Section 4.5 functionality breaks. You may expect things to break if the
filesystem being used for log shipping fills, or if permissions on that directory are wrongly set.

• ERROR: remoteWorkerThread_%d: log archive failed %s - %s\n
This indicates that an error was encountered trying to write a log shipping file. Normally the slon(1) will retry, and hopefully
succeed.

• DEBUG2: remoteWorkerThread_%d: writing archive log...
This indicates that a log shipping archive log is being written for a particular SYNC set.

• INFO: remoteWorkerThread_%d: Run Archive Command %s
If slon(1) has been configured (-x aka command_on_logarchive) to run a command after generating each log shipping
archive log, this reports when that process is spawned using system().

• ERROR: remoteWorkerThread_%d: Could not open COPY SET archive file %s - %s
Seems pretty self-explanatory...

• ERROR: remoteWorkerThread_%d: Could not generate COPY SET archive header %s - %s
Probably means that we just filled up a filesystem...

Slony-I 2.1.4 Documentation 54 / 263

• ERROR remoteWorkerThread_%d: "update "_slony_regress1".sl_archive_counter set ac_num = ac_num + 1, ac_timestamp
= CURRENT_TIMESTAMP; select ac_num, ac_timestamp from "_slony_regress1".sl_archive_counter; " PGRES_FATAL_ERROR
ERROR: could not serialize access due to concurrent update
This may occasionally occur when using logshipping; this will typically happen if there are 3 or more nodes, and there is an
attempt to concurrently process events sourced from different nodes. This does not represent any serious problem; Slony-I will
retry the event which failed without the need for administrative intervention.

5.5.6.2 Log Messages - DDL scripts

The handling of DDL is somewhat fragile, as described in Section 3.3; here are both informational and error messages that may
occur in the progress of an SLONIK EXECUTE SCRIPT(7) request.

• ERROR: remoteWorkerThread_%d: DDL preparation failed - set %d - only on node %
Something broke when applying a DDL script on one of the nodes. This is quite likely indicates that the node’s schema differed
from that on the origin; you may need to apply a change manually to the node to allow the event to proceed. The scary, scary
alternative might be to delete the offending event, assuming it can’t possibly work...

• SLON_CONFIG: remoteWorkerThread_%d: DDL request with %d statements
This is informational, indicating how many SQL statements were processed.

• SLON_ERROR: remoteWorkerThread_%d: DDL had invalid number of statements - %d
Occurs if there were < 0 statements (which should be impossible) or > MAXSTATEMENTS statements. Probably the script
was bad...

• ERROR: remoteWorkerThread_%d: malloc() failure in DDL_SCRIPT - could not allocate %d bytes of memory
This should only occur if you submit some extraordinarily large DDL script that makes a slon(1) run out of memory

• CONFIG: remoteWorkerThread_%d: DDL Statement %d: [%s]
This lists each DDL statement as it is submitted.

• ERROR: DDL Statement failed - %s
Oh, dear, one of the DDL statements that worked on the origin failed on this remote node...

• CONFIG: DDL Statement success - %s
All’s well...

• ERROR: remoteWorkerThread_%d: Could not generate DDL archive tracker %s - %s
Apparently the DDL script couldn’t be written to a log shipping file...

• ERROR: remoteWorkerThread_%d: Could not submit DDL script %s - %s
Couldn’t write the script to a log shipping file.

• ERROR: remoteWorkerThread_%d: Could not close DDL script %s - %s
Couldn’t close a log shipping file for a DDL script.

• ERROR: Slony-I ddlScript_prepare(): set % not found
Set wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I ddlScript_prepare_int(): set % not found
Set wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I: alterTableForReplication(): Table with id % not found
Apparently the table wasn’t found; could the schema be messed up?

• ERROR: Slony-I: alterTableForReplication(): Table % is already in altered state
Curious... We’re trying to set a table up for replication a second time?

Slony-I 2.1.4 Documentation 55 / 263

• ERROR: Slony-I: alterTableRestore(): Table with id % not found
This runs when a table is being restored to “non-replicated” state; apparently the replicated table wasn’t found.

• ERROR: Slony-I: alterTableRestore(): Table % is not in altered state
Hmm. The table isn’t in altered replicated state. That shouldn’t be, if replication had been working properly...

• NOTICE: Slony-I: alterTableForReplication(): multiple instances of trigger % on table %”,
This normally happens if you have a table that had a trigger attached to it that replication hid due to this being a subscriber
node, and then you added a trigger by the same name back to replication. Now, when trying to "fix up" triggers, those two
triggers conflict.

The DDL script will keep running and rerunning, or the UNINSTALL NODE will keep failing, until you drop the “visible”
trigger, by hand, much as you must have added it, by hand, earlier.

• ERROR: Slony-I: Unable to disable triggers
This is the error that follows the “multiple triggers” problem.

5.5.6.3 Threading Issues

There should not be any “user-serviceable” aspects to the Slony-I threading model; each slon(1) creates a well-specified set of
helper threads to manage the various database connections that it requires. The only way that anything should break on the
threading side is if you have not compiled PostgreSQL libraries to “play well” with threading, in which case you will be unable
to compile Slony-I in the first place.

• FATAL: remoteWorkerThread_%d: pthread_create() - %s
Couldn’t create a new remote worker thread.

• DEBUG1 remoteWorkerThread_%d: helper thread for provider %d created
This normally happens when the slon(1) starts: a thread is created for each node to which the local node should be listening
for events.

• DEBUG1: remoteWorkerThread_%d: helper thread for provider %d terminated
If subscriptions reshape such that a node no longer provides a subscription, then the thread that works on that node can be
dropped.

• DEBUG1: remoteWorkerThread_%d: disconnecting from data provider %d
A no-longer-used data provider may be dropped; if connection information is changed, the slon(1) needs to disconnect and
reconnect.

• DEBUG2: remoteWorkerThread_%d: ignore new events due to shutdown
If the slon(1) is shutting down, it is futile to process more events

• DEBUG1: remoteWorkerThread_%d: node %d - no worker thread
Curious: we can’t wake up the worker thread; there probably should already be one...

5.5.6.4 Log Entries At Subscription Time

Subscription time is quite a special time in Slony-I. If you have a large amount of data to be copied to subscribers, this may take
a considerable period of time. Slony-I logs a fairly considerable amount of information about its progress, which is sure to be
useful to the gentle reader. In particular, it generates log output every time it starts and finishes copying data for a given table as
well as when it completes reindexing the table. That may not make a 28 hour subscription go any faster, but at least helps you
have some idea of how it is progressing.

• DEBUG1: copy_set %d
This indicates the beginning of copying data for a new subscription.

Slony-I 2.1.4 Documentation 56 / 263

• ERROR: remoteWorkerThread_%d: set %d not found in runtime configuration
slon(1) tried starting up a subscription; it couldn’t find conninfo for the data source. Perhaps paths are not properly propagated?

• ERROR: remoteWorkerThread_%d: node %d has no pa_conninfo
Apparently the conninfo configuration was wrong...

• ERROR: copy set %d cannot connect to provider DB node %d
slon(1) couldn’t connect to the provider. Is the conninfo wrong? Or perhaps authentication is misconfigured? Or perhaps the
database is down?

• DEBUG1: remoteWorkerThread_%d: connected to provider DB
Excellent: the copy set has a connection to its provider

• ERROR: Slony-I: sequenceSetValue(): sequence % not found
Curious; the sequence object is missing. Could someone have dropped it from the schema by hand (e.g. - not using SLONIK
EXECUTE SCRIPT(7))?

• ERROR: Slony-I: subscribeSet() must be called on provider
This function should only get called on the provider node. slonik(1) normally handles this right, unless one had wrong DSNs
in a slonik(1) script...

• ERROR: Slony-I: subscribeSet(): set % not found
Hmm. The provider node isn’t aware of this set. Wrong parms to a slonik(1) script?

• ERROR: Slony-I: subscribeSet(): set origin and receiver cannot be identical
Duh, an origin node can’t subscribe to itself.

• ERROR: Slony-I: subscribeSet(): set provider and receiver cannot be identical
A receiver must subscribe to a different node...

• Slony-I: subscribeSet(): provider % is not an active forwarding node for replication set %
You can only use a live, active, forwarding provider as a data source.

• Slony-I: subscribeSet_int(): set % is not active, cannot change provider

You can’t change the provider just yet...

• Slony-I: subscribeSet_int(): set % not found
This node isn’t aware of the set... Perhaps you submitted wrong parms?

• Slony-I: unsubscribeSet() must be called on receiver
Seems obvious... This probably indicates a bad slonik(1) admin DSN...

• Slony-I: Cannot unsubscribe set % while being provider
This should seem obvious; SLONIK UNSUBSCRIBE SET(7) will fail if a node has dependent subscribers for which it is the
provider

• Slony-I: cleanupEvent(): Single node - deleting events < %
If there’s only one node, the cleanup event will delete old events so that you don’t get “build-up of crud.”

• Slony-I: determineIdxnameUnique(): table % not found
Did you properly copy over the schema to a new node???

• Slony-I: table % has no primary key
This likely signifies a bad loading of schema...

• Slony-I: table % has no unique index %
This likely signifies a bad loading of schema...

Slony-I 2.1.4 Documentation 57 / 263

• WARN: remoteWorkerThread_%d: transactions earlier than XID %s are still in progress
This indicates that some old transaction is in progress from before the earliest available SYNC on the provider. Slony-I cannot
start replicating until that transaction completes. This will repeat until thetransaction completes...

• DEBUG2: remoteWorkerThread_%d: prepare to copy table %s
This indicates that slon(1) is beginning preparations to set up subscription for a table.

• ERROR: remoteWorkerThread_%d: Could not lock table %s on subscriber
For whatever reason, the table could not be locked, so the subscription needs to be restarted. If the problem was something like
a deadlock, retrying may help. If the problem was otherwise, you may need to intervene...

• DEBUG2: remoteWorkerThread_%d: all tables for set %d found on subscriber
An informational message indicating that the first pass through the tables found no problems...

• DEBUG2: remoteWorkerThread_%d: copy sequence %s
Processing some sequence...

• DEBUG2: remoteWorkerThread_%d: copy table %s
slon(1) is starting to copy a table...

• DEBUG3: remoteWorkerThread_%d: table %s Slony-I serial key added local
Just added new column to the table to provide surrogate primary key.

• DEBUG3: remoteWorkerThread_%d: local table %s already has Slony-I serial key
Did not need to add serial key; apparently it was already there.

• DEBUG3: remoteWorkerThread_%d: table %s does not require Slony-I serial key
Apparently this table didn’t require a special serial key...

• DEBUG3: remoteWorkerThread_%d: table %s Slony-I serial key added local

• DEBUG2: remoteWorkerThread_%d: Begin COPY of table %s
slon(1) is about to start the COPY on both sides to copy a table...

• ERROR: remoteWorkerThread_%d: Could not generate copy_set request for %s - %s
This indicates that the delete/copy requests failed on the subscriber. The slon(1) will repeat the COPY_SET attempt; it will
probably continue to fail..

• ERROR: remoteWorkerThread_%d: copy to stdout on provider - %s %s
Evidently something about the COPY to stdout on the provider node broke... The event will be retried...

• ERROR: remoteWorkerThread_%d: copy from stdin on local node - %s %s
Evidently something about the COPY into the table on the subscriber node broke... The event will be retried...

• DEBUG2: remoteWorkerThread_%d: %d bytes copied for table %s
This message indicates that the COPY of the table has completed. This is followed by running ANALYZE and reindexing the
table on the subscriber.

• DEBUG2: remoteWorkerThread_%d: %.3f seconds to copy table %s
After this message, copying and reindexing and analyzing the table on the subscriber is complete.

• DEBUG2: remoteWorkerThread_%d: set last_value of sequence %s (%s) to %s
As should be no surprise, this indicates that a sequence has been processed on the subscriber.

• DEBUG2: remoteWorkerThread_%d: %.3 seconds to copy sequences
Summarizing the time spent processing sequences in the COPY_SET event.

Slony-I 2.1.4 Documentation 58 / 263

• ERROR: remoteWorkerThread_%d: query %s did not return a result
This indicates that the query, as part of final processing of COPY_SET, failed. The copy will restart...

• DEBUG2: remoteWorkerThread_%d: copy_set no previous SYNC found, use enable event
This takes place if no past SYNC event was found; the current event gets set to the event point of the ENABLE_SUBSCRIPTION
event.

• DEBUG2: remoteWorkerThread_%d: copy_set SYNC found, use event seqno %s
This takes place if a SYNC event was found; the current event gets set as shown.

• ERROR: remoteWorkerThread_%d: sl_setsync entry for set %d not found on provider
SYNC synchronization information was expected to be drawn from an existing subscriber, but wasn’t found. Something
replication-breakingly-bad has probably happened...

• DEBUG1: remoteWorkerThread_%d: could not insert to sl_setsync_offline
Oh, dear. After setting up a subscriber, and getting pretty well everything ready, some writes to a log shipping file failed.
Perhaps disk filled up...

• DEBUG1: remoteWorkerThread_%d: %.3f seconds to build initial setsync status
Indicates the total time required to get the copy_set event finalized...

• DEBUG1: remoteWorkerThread_%d: disconnected from provider DB
At the end of a subscribe set event, the subscriber’s slon(1) will disconnect from the provider, clearing out connections...

• DEBUG1: remoteWorkerThread_%d: copy_set %d done in %.3f seconds
Indicates the total time required to complete copy_set... This indicates a successful subscription!

5.5.6.5 Log Entries Associated with MERGE SET

These various exceptions cause SLONIK MERGE SET(7) to be rejected; something ought to be corrected before submitting the
request again.

• ERROR: Slony-I: merged set ids cannot be identical
It is illogical to try to merge a set with itself.

• ERROR: Slony-I: set % not found
A missing set cannot be merged.

• ERROR: Slony-I: set % does not originate on local node
The SLONIK MERGE SET(7) request must be submitted to the origin node for the sets that are to be merged.

• ERROR: Slony-I: subscriber lists of set % and % are different
Sets can only be merged if they have identical subscriber lists.

• ERROR: Slony-I: set % has subscriptions in progress - cannot merge
SLONIK MERGE SET(7) cannot proceed until all subscriptions have completed processing. If this message arises, that indi-
cates that the subscriber lists are the same, but that one or more of the nodes has not yet completed setting up its subscription.
It may be that waiting a short while will permit resubmitting the SLONIK MERGE SET(7) request.

Slony-I 2.1.4 Documentation 59 / 263

5.5.6.6 Log Entries Associated With Normal SYNC activity

Some of these messages indicate exceptions, but the “normal” stuff represents what you should expect to see most of the time
when replication is just plain working.

• DEBUG2: remoteWorkerThread_%d: forward confirm %d,%s received by %d
These events should occur frequently and routinely as nodes report confirmations of the events they receive.

• DEBUG1: remoteWorkerThread_%d: SYNC %d processing
This indicates the start of processing of a SYNC

• ERROR: remoteWorkerThread_%d: No pa_conninfo for data provider %d
Oh dear, we haven’t connection information to connect to the data provider. That shouldn’t be possible, normally...

• ERROR: remoteListenThread_%d: timeout for event selection
This means that the listener thread (src/slon/remote_listener.c) timed out when trying to determine what events
were outstanding for it.

This could occur because network connections broke, in which case restarting the slon(1) might help.

Alternatively, this might occur because the slon(1) for this node has been broken for a long time, and there are an enor-
mous number of entries in sl_event on this or other nodes for the node to work through, and it is taking more than
slon_conf_remote_listen_timeout seconds to run the query. In older versions of Slony-I, that configuration parameter did
not exist; the timeout was fixed at 300 seconds. In newer versions, you might increase that timeout in the slon(1) config file
to a larger value so that it can continue to completion. And then investigate why nobody was monitoring things such that
replication broke for such a long time...

• ERROR: remoteWorkerThread_%d: cannot connect to data provider %d on ’dsn’
Oh dear, we haven’t got correct connection information to connect to the data provider.

• DEBUG1: remoteWorkerThread_%d: connected to data provider %d on ’dsn’
Excellent; the slon(1) has connected to the provider.

• WARN: remoteWorkerThread_%d: don’t know what ev_seqno node %d confirmed for ev_origin %d
There’s no confirmation information available for this node’s provider; need to abort the SYNC and wait a bit in hopes that
that information will emerge soon...

• DEBUG1: remoteWorkerThread_%d: data provider %d only confirmed up to ev_seqno %d for ev_origin %d
The provider for this node is a subscriber, and apparently that subscriber is a bit behind. The slon(1) will need to wait for the
provider to catch up until it has new data.

• DEBUG2: remoteWorkerThread_%d: data provider %d confirmed up to ev_seqno %s for ev_origin %d - OK
All’s well; the provider should have the data that the subscriber needs...

• DEBUG2: remoteWorkerThread_%d: syncing set %d with %d table(s) from provider %d
This is declaring the plans for a SYNC: we have a set with some tables to process.

• DEBUG2: remoteWorkerThread_%d: ssy_action_list value: %s length: %d
This portion of the query to collect log data to be applied has been known to “bloat up”; this shows how it has gotten com-
pressed...

• DEBUG2: remoteWorkerThread_%d: Didn’t add OR to provider
This indicates that there wasn’t anything in a “provider” clause in the query to collect log data to be applied, which shouldn’t
be. Things are quite likely to go bad at this point...

• DEBUG2: remoteWorkerThread_%d: no sets need syncing for this event
This will be the case for all SYNC events generated on nodes that are not originating replication sets. You can expect to see
these messages reasonably frequently.

Slony-I 2.1.4 Documentation 60 / 263

• DEBUG3: remoteWorkerThread_%d: activate helper %d
We’re about to kick off a thread to help process SYNC data...

• DEBUG4: remoteWorkerThread_%d: waiting for log data
The thread is waiting to get data to consume (e.g. - apply to the replica).

• ERROR: remoteWorkerThread_%d: %s %s - qualification was %s
Apparently an application of replication data to the subscriber failed... This quite likely indicates some sort of serious corrup-
tion.

• ERROR: remoteWorkerThread_%d: replication query did not affect one row (cmdTuples = %s) - query was: %s
qualification was: %s
If SLON_CHECK_CMDTUPLES is set, slon(1) applies changes one tuple at a time, and verifies that each change affects
exactly one tuple. Apparently that wasn’t the case here, which suggests a corruption of replication. That’s a rather bad thing...

• ERROR: remoteWorkerThread_%d: SYNC aborted
The SYNC has been aborted. The slon(1) will likely retry this SYNC some time soon. If the SYNC continues to fail,
there is some continuing problem, and replication will likely never catch up without intervention. It may be necessary to
unsubscribe/resubscribe the affected slave set, or, if there is only one set on the slave node, it may be simpler to drop and
recreate the slave node. If application connections may be shifted over to the master during this time, application downtime
may not be necessary.

• DEBUG2: remoteWorkerThread_%d: new sl_rowid_seq value: %s
This marks the progression of this internal Slony-I sequence.

• DEBUG2: remoteWorkerThread_%d: SYNC %d done in %.3f seconds
This indicates the successful completion of a SYNC. Hurray!

• DEBUG1: remoteWorkerThread_%d_d:%.3f seconds delay for first row
This indicates how long it took to get the first row from the LOG cursor that pulls in data from the sl_log tables.

• ERROR: remoteWorkerThread_%d_d: large log_cmddata for actionseq %s not found
slon(1) could not find the data for one of the “very large” sl_log table tuples that are pulled individually. This shouldn’t happen.

• DEBUG2: remoteWorkerThread_%d_d:%.3f seconds until close cursor
This indicates how long it took to complete reading data from the LOG cursor that pulls in data from the sl_log tables.

• DEBUG2: remoteWorkerThread_%d_d: inserts=%d updates=%d deletes=%d
This reports how much activity was recorded in the current SYNC set.

• DEBUG3: remoteWorkerThread_%d: compress_actionseq(list,subquery) Action list: %s
This indicates a portion of the LOG cursor query that is about to be compressed. (In some cases, this could grow to enormous
size, blowing up the query parser...)

• DEBUG3: remoteWorkerThread_%d: compressed actionseq subquery %s
This indicates what that subquery compressed into.

5.5.6.7 Log Entries - Adding Objects to Sets

These entries will be seen on an origin node’s logs at the time you are configuring a replication set; some of them will be seen on
subscribers at subscription time.

• ERROR: Slony-I: setAddTable_int(): table % has no index %
Apparently a PK index was specified that is absent on this node...

Slony-I 2.1.4 Documentation 61 / 263

• ERROR: Slony-I setAddTable_int(): table % not found
Table wasn’t found on this node; did you load the schema in properly?.

• ERROR: Slony-I setAddTable_int(): table % is not a regular table
You tried to replicate something that isn’t a table; you can’t do that!

• NOTICE: Slony-I setAddTable_int(): table % PK column % nullable
You tried to replicate a table where one of the columns in the would-be primary key is allowed to be null. All PK columns
must be NOT NULL. This request is about to fail.

A check for this condition was introduced in Slony-I version 1.2. If you have a 1.1 replica, it will continue to function after
upgrading to 1.2, but you will experience this complaint when you try to add new subscribers.

You can look for table/index combinations on an existing node that have NULLABLE columns in the primary key via the
following query:

select c.relname as table_name, ic.relname as index_name, att.attname, att2.attnotnull
from _cluster.sl_table t, pg_catalog.pg_class c, pg_index i, pg_catalog.pg_class ic, ←↩

pg_catalog.pg_attribute att, pg_catalog.pg_attribute att2
where t.tab_reloid = c.oid

and t.tab_idxname = ic.relname
and ic.oid = i.indexrelid
and att.attrelid = i.indexrelid
and att2.attname = att.attname
and att2.attrelid = c.oid
and att2.attnotnull = ’f’;

These may be rectified via submitting, for each one, a query of the form: alter table mytable alter column nullablecol set
not null; Running this against a subscriber where the table is empty will complete very quickly. It will take longer to apply
this change to a table that already contains a great deal of data, as the alteration will scan the table to verify that there are no
tuples where the column is NULL.

• ERROR: Slony-I setAddTable_int(): table % not replicable!
This happens because of the NULLable PK column.

• ERROR: Slony-I setAddTable_int(): table id % has already been assigned!
The table ID value needs to be assigned uniquely in SLONIK SET ADD TABLE(7); apparently you requested a value already
in use.

• ERROR: Slony-I setAddSequence(): set % not found
Apparently the set you requested is not available...

• ERROR: Slony-I setAddSequence(): set % has remote origin
You may only add things at the origin node.

• ERROR: Slony-I setAddSequence(): cannot add sequence to currently subscribed set %
Apparently the set you requested has already been subscribed. You cannot add tables/sequences to an already-subscribed set.
You will need to create a new set, add the objects to that new set, and set up subscriptions to that.

• ERROR: Slony-I setAddSequence_int(): set % not found
Apparently the set you requested is not available...

• ERROR: Slony-I setAddSequence_int(): sequence % not found
Apparently the sequence you requested is not available on this node. How did you set up the schemas on the subscribers???

• ERROR: Slony-I setAddSequence_int(): % is not a sequence
Seems pretty obvious :-).

• ERROR: Slony-I setAddSequence_int(): sequence ID % has already been assigned
Each sequence ID added must be unique; apparently you have reused an ID.

Slony-I 2.1.4 Documentation 62 / 263

5.5.6.8 Logging When Moving Objects Between Sets

• ERROR: Slony-I setMoveTable_int(): table % not found
Table wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I setMoveTable_int(): set ids cannot be identical
Does it make sense to move a table from a set into the very same set?

• ERROR: Slony-I setMoveTable_int(): set % not found
Set wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I setMoveTable_int(): set % does not originate on local node
Set wasn’t found to have origin on this node; you probably gave the wrong EVENT NODE...

• ERROR: Slony-I setMoveTable_int(): subscriber lists of set % and % are different
You can only move objects between sets that have identical subscriber lists.

• ERROR: Slony-I setMoveSequence_int(): sequence % not found
Sequence wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I setMoveSequence_int(): set ids cannot be identical
Does it make sense to move a sequence from a set into the very same set?

• ERROR: Slony-I setMoveSequence_int(): set % not found
Set wasn’t found on this node; you probably gave the wrong ID number...

• ERROR: Slony-I setMoveSequence_int(): set % does not originate on local node
Set wasn’t found to have origin on this node; you probably gave the wrong EVENT NODE...

• ERROR: Slony-I setMoveSequence_int(): subscriber lists of set % and % are different
You can only move objects between sets that have identical subscriber lists.

5.5.6.9 Issues with Dropping Objects

• ERROR: Slony-I setDropTable(): table % not found
Table wasn’t found on this node; are you sure you had the ID right?

• ERROR: Slony-I setDropTable(): set % not found
The replication set wasn’t found on this node; are you sure you had the ID right?

• ERROR: Slony-I setDropTable(): set % has remote origin
The replication set doesn’t originate on this node; you probably need to specify an EVENT NODE in the SLONIK SET DROP
TABLE(7) command.

• ERROR: Slony-I setDropSequence_int(): sequence % not found
Could this sequence be in another set?

• ERROR: Slony-I setDropSequence_int(): set % not found
Could you have gotten the set ID wrong?

• ERROR: Slony-I setDropSequence_int(): set % has origin at another node - submit this to that node
This message seems fairly self-explanatory...

Slony-I 2.1.4 Documentation 63 / 263

5.5.6.10 Issues with MOVE SET, FAILOVER, DROP NODE

Many of these errors will occur if you submit a slonik(1) script that describes a reconfiguration incompatible with your cluster’s
current configuration. Those will lead to the feeling: “Whew, I’m glad slonik(1) caught that for me!”

Some of the others lead to a slon(1) telling itself to fall over; all should be well when you restart it, as it will read in the revised,
newly-correct configuration when it starts up.

Alas, a few indicate that “something bad happened,” for which the resolution may not necessarily be easy. Nobody said that
replication was easy, alas...

• ERROR: Slony-I: DROP_NODE cannot initiate on the dropped node
You need to have an EVENT NODE other than the node that is to be dropped....

• ERROR: Slony-I: Node % is still configured as a data provider
You cannot drop a node that is in use as a data provider; you need to reshape subscriptions so no nodes are dependent on it
first.

• ERROR: Slony-I: Node % is still origin of one or more sets
You can’t drop a node if it is the origin for a set! Use SLONIK MOVE SET(7) or SLONIK FAILOVER(7) first.

• ERROR: Slony-I: cannot failover - node % has no path to the backup node
You cannot failover to a node that isn’t connected to all the subscribers, at least indirectly.

• ERROR: Slony-I: cannot failover - node % is not subscribed to set %
You can’t failover to a node that doesn’t subscribe to all the relevant sets.

• ERROR: Slony-I: cannot failover - subscription for set % is not active
If the subscription has been set up, but isn’t yet active, that’s still no good.

• ERROR: Slony-I: cannot failover - node % is not a forwarder of set %
You can only failover or move a set to a node that has forwarding turned on.

• NOTICE: failedNode: set % has no other direct receivers - move now
If the backup node is the only direct subscriber, then life is a bit simplified... No need to reshape any subscriptions!

• NOTICE: failedNode set % has other direct receivers - change providers only
In this case, all direct subscribers are pointed to the backup node, and the backup node is pointed to receive from another node
so it can get caught up.

• NOTICE: Slony-I: Please drop schema _@CLUSTERNAME@
A node has been uninstalled; you may need to drop the schema...

5.5.6.11 Log Switching

These messages relate to the new-in-1.2 facility whereby Slony-I periodically switches back and forth between storing data in
sl_log_1 and sl_log_2.

• Slony-I: Logswitch to sl_log_2 initiated’
Indicates that slon(1) is in the process of switching over to this log table.

• Slony-I: Logswitch to sl_log_1 initiated’
Indicates that slon(1) is in the process of switching over to this log table.

• Previous logswitch still in progress
An attempt was made to do a log switch while one was in progress...

Slony-I 2.1.4 Documentation 64 / 263

• ERROR: remoteWorkerThread_%d: cannot determine current log status
The attempt to read from sl_log_status, which determines whether we’re working on sl_log_1 or sl_log_2 got no results;
that can’t be a good thing, as there certainly should be data here... Replication is likely about to halt...

• DEBUG2: remoteWorkerThread_%d: current local log_status is %d
This indicates which of sl_log_1 and sl_log_2 are being used to store replication data.

5.5.6.12 Miscellanea

Perhaps these messages should be categorized further; that remains a task for the documentors.

• ERROR: Slonik version: @MODULEVERSION@ != Slony-I version in PG build %
This is raised in checkmoduleversion() if there is a mismatch between the version of Slony-I as reported by slonik(1)
versus what the PostgreSQL build has.

• ERROR: Slony-I: registry key % is not an int4 value
Raised in registry_get_int4(), this complains if a requested value turns out to be NULL.

• ERROR: registry key % is not a text value
Raised in registry_get_text(), this complains if a requested value turns out to be NULL.

• ERROR: registry key % is not a timestamp value
Raised in registry_get_timestamp(), this complains if a requested value turns out to be NULL.

• NOTICE: Slony-I: cleanup stale sl_nodelock entry for pid=%
This will occur when a slon(1) starts up after another has crashed; this is routine cleanup.

• ERROR: Slony-I: This node is already initialized
This would typically happen if you submit SLONIK STORE NODE(7) against a node that has already been set up with the
Slony-I schema.

• ERROR: Slony-I: node % not found
An attempt to mark a node not listed locally as enabled should fail...

• ERROR: Slony-I: node % is already active
An attempt to mark a node already marked as active as active should fail...

• DEBUG4: remoteWorkerThread_%d: added active set %d to provider %d
Indicates that this set is being provided by this provider.

• DEBUG2: remoteWorkerThread_%d: event %d ignored - unknown origin
Probably happens if events arrive before the STORE_NODE event that tells that the new node now exists...

• WARN: remoteWorkerThread_%d: event %d ignored - origin inactive
This shouldn’t occur now (2007) as we don’t support the notion of deactivating a node...

• DEBUG2: remoteWorkerThread_%d: event %d ignored - duplicate
This might be expected to happen if the event notification comes in concurrently from two sources...

• DEBUG2: remoteWorkerThread_%d: unknown node %d
Happens if the slon(1) is unaware of this node; probably a sign of STORE_NODE requests not propagating...

• insert or update on table "sl_path" violates foreign key constraint "pa_client-no_id-ref". DETAIL: Key (pa_client)=(2)
is not present on table "s1_node
This happens if you try to do SLONIK SUBSCRIBE SET(7) when the node unaware of a would-be new node; probably a sign
of STORE_NODE and STORE_PATH requests not propagating...

Slony-I 2.1.4 Documentation 65 / 263

• monitorThread: stack reallocation - size %d > warning threshold of 100. Stack perhaps isn’t getting processed properly
by monitoring thread
This is liable to occur if the monitoring thread isn’t properly consuming updates from the stack, so the stack is growing in
memory.

• monitor_state - unable to allocate memory for actor (len %d)
This occurs when the slon(1) function monitor_state() is unable to allocate memory, which likely indicates that some-
thing has grown in memory in an unbounded way.

Similar log entries may also occur for event types.

5.6 Performance Considerations

Slony-I is a trigger based replication engine. For each row of application data you insert, update, or delete in your database
Slony-I will insert an additional row into the sl_log_1 or sl_log_2 tables. This means that Slony-I will likely have a negative
impact on your databases performance. Predicting this impact is more difficult because the amount of impact is dependent on
your database workload and hardware capabilities.

The following Slony-I operations are likely to impact performance:

• Changing data in a replicated table will result in rows being added to sl_log_1 or sl_log_2

• When a slon daemon generates a SYNC event on each node it will need to add to the sl_event table.

• Each remote slon daemon will need to query the sl_log_1, sl_log_2 and sl_event tables to pull the data to replicate

5.6.1 Vacuum Concerns

The sl_event and sl_confirm tables need to be regularly vacuumed because Slony-I will often add and delete rows to these
tables. The autovacuum feature of PostgreSQL included in 8.3 and above is the recommended way of handling vacuums. If
autovacuum does is not working well it can be configured to not vacuum the sl_event and sl_confirm tables (See the PostgreSQL
documentation information on how to disable autovacuum on a per table basis). If Slony-I detects that autovacuum has been
disabled for any of the Slony-I tables then it will try to vacuum the table itself as part of cleanupThread processing.

Note
Older versions of Slony-I and older versions of PostgreSQL had different vacuuming concerns. If your using an older version of
Slony-I (prior to 2.0) then you should refer to the documentation for your Slony-I version to learn about the vacuuming concerns
that apply to you.

5.6.2 Log Switching

Slony-I will frequently switch between sl_log_1 and sl_log_2 as the table that the Slony-I triggers log data into. Once all of the
transactions in one of these tables have been replicated Slony-I will TRUNCATE the table. The usage of TRUNCATE in this
manner eliminates the need to vacuum sl_log_1 and sl_log_2.

5.6.3 Long Running Transactions

Long running transactions can impact the performance of Slony-I because they prevent Log Switching from occurring. As long
as your oldest transaction is open it will sl_log_1 or sl_log_2 from being truncated. This means that the other sl_log table will
continue to grow in size. Long running transactions can also stop sl_event and sl_confirm from being vacuumed. The table bloat
that occurs due to a long running transaction will mean that queries to these tables will take longer. This can lead to replication
falling behind. If replication is behind then the data in these tables has remain until that data is replicated. The increased size of
the Slony-I tables can cause replication to fall even further behind.

Slony-I 2.1.4 Documentation 66 / 263

5.7 Security Considerations

The simplest and most common way of deploying Slony-I has been to create a Slony-I database user account on all nodes in the
system and give that account database superuser privileges. This allows Slony-I to do “anything it needs.”

In some environments, this is too much privilege to give out to an automated system, so this section describes how to minimize
the privileges given out.

5.7.1 Minimum Privileges

The minimum privileges for running each component of Slony-I may be more specifically described.

slonik(1) The slonik admin connections need to connect to the database as a database superuser. As part of the installation of
Slony-I, the slonik program will create C language functions in the database. This requires superuser access. Some slonik
commands will enable and disable indicies which by manipulating pg_class. This also requires superuser access.

slon(1) Local Connection Each slon instance has a “local” database connection. This is the database connection that is specified
on the either the slon command line or the slon configuration file.

Slon needs to connect to this database with considerable “write” privileges, and requires superuser access in a couple of
places.

It must be able to

• Alter pg_class to deactivate indices when preparing to COPY a table

• Make alterations to any of the Slony-I created tables

• Make modifications (INSERT/UPDATE/DELETE/ALTER) to all replicated tables.

• set the session_replication_role to replica

slon(1) Remote Connections The Remote slon connection information is specified in the SLONIK STORE PATH(7) command
when adding paths. The slon(1) daemon needs to connect to remote databases with sufficient permissions to:

• SELECT from sl_event

• SELECT the sl_log_1 and sl_log_2 tables

• SELECT any replicated tables that originate on the remote node. This is done as part of the initial COPY during the
subscription process

Note that this role does not have any need to modify data; it purely involves SELECT access.

5.7.2 Lowering Authority Usage from Superuser

Traditionally, it has been stated that “Slony-I needs to use superuser connections.” It turns out that this is not actually true, and
and if there are particular concerns about excessive use of superuser roles, it is possible to reduce the “security demands” of
Slony-I considerably.

It is simplest to have the replication management user be a superuser, as, in that case, one need not think about what permissions
to configure, but this is excessive.

There is only actually one place where Slony-I truly requires superuser access, and that is for installation (slonik) and on the
local connetion slon uses.

Slony-I 2.1.4 Documentation 67 / 263

5.7.3 Handling Database Authentication (Passwords)

The slon and slonik programs connect to PostgreSQL as a normal PostgreSQL client connection. How PostgreSQL authenti-
cates the database connection is controlled through the normal libpq authentication options via the pg_hba.conf file. See the
PostgreSQL manual for full details. If you choose to require password authentication for Slony-I connections then you have two
options on where slon can obtain the passwords from.

• You can store the passwords as part of the conninfo string passed to the SLONIK STORE PATH(7) statement. This means that
database passwords are stored inside of the database in cleartext.

• You can setup a .pgpass file on each node you are running slon on. slon will then retreive the passwords from the .pgpass file.
You must make sure that each node running slon have passwords for all paths.

5.7.4 Other Good Security Practices

In order to be able to clearly identify which logical roles are being used, it seems advisable to set up users specifically for use by
replication, one or more slony users.

As already discussed, these users may have specific permissions attached to indicate what capabilities they are intended to have.

It is also useful for these users to be present so that system monitoring and log monitoring processes are apprised of “who” is
doing things in the environment.

Slony-I 2.1.4 Documentation 68 / 263

Chapter 6

Additional Utilities

6.1 Slony-I Administration Scripts

A number of tools have grown over the course of the history of Slony-I to help users manage their clusters. This section along
with the ones on Section 5.1 discusses them.

6.1.1 altperl Scripts

There is a set of scripts to simplify administration of set of Slony-I instances. The scripts support having arbitrary numbers of
nodes. They may be installed as part of the installation process:

./configure --with-perltools

This will produce a number of scripts with the prefix slonik_. They eliminate tedium by always referring to a central configuration
file for the details of your site configuration. A documented sample of this file is provided in altperl/slon_tools.
conf-sample. Most also include some command line help with the "--help" option, making them easier to learn and use.

Most generate Slonik scripts that are printed to STDOUT. At one time, the commands were passed directly to slonik(1) for
execution. Unfortunately, this turned out to be a pretty large calibre “foot gun”, as minor typos on the command line led, on a
couple of occasions, to pretty calamitous actions. The savvy administrator should review the script before piping it to slonik(1).

6.1.1.1 Support for Multiple Clusters

The UNIX environment variable SLONYNODES is used to determine what Perl configuration file will be used to control the shape
of the nodes in a Slony-I cluster. If it is not provided, a default slon_tools.conf location will be referenced.

What variables are set up.

• $CLUSTER_NAME=orglogs; # What is the name of the replication cluster?

• $LOGDIR=’/opt/OXRS/log/LOGDBS’; # What is the base directory for logs?

• $APACHE_ROTATOR="/opt/twcsds004/OXRS/apache/rotatelogs"; # If set, where to find Apache log rotator

• foldCase # If set to 1, object names (including schema names) will be folded to lower case. By default, your object names
will be left alone. Note that PostgreSQL itself folds object names to lower case; if you create a table via the command
CREATE TABLE SOME_THING (Id INTEGER, STudlYName text);, the result will be that all of those components are
forced to lower case, thus equivalent to create table some_thing (id integer, studlyname text);, and the name of table and,
in this case, the fields will all, in fact, be lower case.

You then define the set of nodes that are to be replicated using a set of calls to add_node().

add_node (host => ’10.20.30.40’, dbname => ’orglogs’, port => 5437, user => ’postgres’, node => 4, parent => 1);

The set of parameters for add_node() are thus:

Slony-I 2.1.4 Documentation 69 / 263

my %PARAMS = (host=> undef, # Host name
dbname => ’template1’, # database name

port => 5432, # Port number
user => ’postgres’, # user to connect as
node => undef, # node number
password => undef, # password for user
parent => 1, # which node is parent to this node
noforward => undef, # shall this node be set up to forward results?
sslmode => undef, # SSL mode argument - determine

priority of SSL usage
= disable,allow,prefer,require

options => undef # extra command line options to pass to the
slon daemon

);

6.1.1.2 Set configuration - cluster.set1, cluster.set2

The UNIX environment variable SLONYSET is used to determine what Perl configuration file will be used to determine what
objects will be contained in a particular replication set.

Unlike SLONYNODES, which is essential for all of the slonik(1)-generating scripts, this only needs to be set when running
create_set, as that is the only script used to control what tables will be in a particular replication set.

6.1.1.3 slonik_build_env

Queries a database, generating output hopefully suitable for slon_tools.conf consisting of:

• a set of add_node() calls to configure the cluster

• The arrays @KEYEDTABLES, @SERIALTABLES, and @SEQUENCES

Note that in Slony-I 2.0 and later, @SERIALTABLES is no longer meaningful as SLONIK SET ADD TABLE(7) no longer
supports the SERIAL option.

6.1.1.4 slonik_print_preamble

This generates just the “preamble” that is required by all slonik scripts. In effect, this provides a “skeleton” slonik script that
does not do anything.

6.1.1.5 slonik_create_set

This requires SLONYSET to be set as well as SLONYNODES; it is used to generate the slonik script to set up a replication set
consisting of a set of tables and sequences that are to be replicated.

6.1.1.6 slonik_drop_node

Generates Slonik script to drop a node from a Slony-I cluster.

6.1.1.7 slonik_drop_set

Generates Slonik script to drop a replication set (e.g. - set of tables and sequences) from a Slony-I cluster.

This represents a pretty big potential “foot gun” as this eliminates a replication set all at once. A typo that points it to the
wrong set could be rather damaging. Compare to Section 6.1.1.25 and Section 6.1.1.6; with both of those, attempting to drop
a subscription or a node that is vital to your operations will be blocked (via a foreign key constraint violation) if there exists a
downstream subscriber that would be adversely affected. In contrast, there will be no warnings or errors if you drop a set; the set
will simply disappear from replication.

Slony-I 2.1.4 Documentation 70 / 263

6.1.1.8 slonik_drop_table

Generates Slonik script to drop a table from replication. Requires, as input, the ID number of the table (available from table
sl_table) that is to be dropped.

6.1.1.9 slonik_execute_script

Generates Slonik script to push DDL changes to a replication set.

6.1.1.10 slonik_failover

Generates Slonik script to request failover from a dead node to some new origin

6.1.1.11 slonik_init_cluster

Generates Slonik script to initialize a whole Slony-I cluster, including setting up the nodes, communications paths, and the
listener routing.

6.1.1.12 slonik_merge_sets

Generates Slonik script to merge two replication sets together.

6.1.1.13 slonik_move_set

Generates Slonik script to move the origin of a particular set to a different node.

6.1.1.14 replication_test

Script to test whether Slony-I is successfully replicating data.

6.1.1.15 slonik_restart_node

Generates Slonik script to request the restart of a node. This was particularly useful pre-1.0.5 when nodes could get snarled up
when slon daemons died.

6.1.1.16 slonik_restart_nodes

Generates Slonik script to restart all nodes in the cluster. Not particularly useful.

6.1.1.17 slony_show_configuration

Displays an overview of how the environment (e.g. - SLONYNODES) is set to configure things.

6.1.1.18 slon_kill

Kills slony watchdog and all slon daemons for the specified set. It only works if those processes are running on the local host, of
course!

6.1.1.19 slon_start

This starts a slon daemon for the specified cluster and node, and uses slon_watchdog to keep it running.

Slony-I 2.1.4 Documentation 71 / 263

6.1.1.20 slon_watchdog

Used by slon_start.

6.1.1.21 slon_watchdog2

This is a somewhat smarter watchdog; it monitors a particular Slony-I node, and restarts the slon process if it hasn’t seen updates
go in in 20 minutes or more.

This is helpful if there is an unreliable network connection such that the slon sometimes stops working without becoming aware
of it.

6.1.1.22 slonik_store_node

Adds a node to an existing cluster.

6.1.1.23 slonik_subscribe_set

Generates Slonik script to subscribe a particular node to a particular replication set.

6.1.1.24 slonik_uninstall_nodes

This goes through and drops the Slony-I schema from each node; use this if you want to destroy replication throughout a cluster.
As its effects are necessarily rather destructive, this has the potential to be pretty unsafe.

6.1.1.25 slonik_unsubscribe_set

Generates Slonik script to unsubscribe a node from a replication set.

6.1.1.26 slonik_update_nodes

Generates Slonik script to tell all the nodes to update the Slony-I functions. This will typically be needed when you upgrade
from one version of Slony-I to another.

6.1.2 mkslonconf.sh

This is a shell script designed to rummage through a Slony-I cluster and generate a set of slon.conf files that slon(1) accesses
via the slon -f slon.conf option.

With all of the configuration residing in a configuration file for each slon(1), they can be invoked with minimal muss and fuss,
with no risk of forgetting the -a option and thereby breaking a log shipping node.

Running it requires the following environment configuration:

• Firstly, the environment needs to be set up with suitable parameters for libpq to connect to one of the databases in the cluster.
Thus, you need some suitable combination of the following environment variables set:

– PGPORT

– PGDATABASE

– PGHOST

– PGUSER

– PGSERVICE

Slony-I 2.1.4 Documentation 72 / 263

• SLONYCLUSTER - the name of the Slony-I cluster to be “rummaged”.

• MKDESTINATION - a directory for configuration to reside in; the script will create MKDESTINATION/$SLONYCLUSTER/
conf for the slon(1) configuration files, and MKDESTINATION/$SLONYCLUSTER/pid for slon(1) to store PID files in.

• LOGHOME - a directory for log files to reside in; a directory of the form $LOGHOME/$SLONYCLUSTER/node[number]
will be created for each node.

For any “new” nodes that it discovers, this script will create a new slon(1) conf file.

Warning
It is fair to say that there are several conditions to beware of; none of these should be greatly surprising...

• The DSN is pulled from the minimum value found for each node in sl_path. You may very well need to modify this.

• Various parameters are set to default values; you may wish to customize them by hand.

• If you are running slon(1) processes on multiple nodes (e.g. - as when running Slony-I across a WAN), this script will
happily create fresh new config files for slon(1)s you wanted to have run on another host.

Be sure to check out what nodes it set up before restarting slon(1)s.

This would usually only cause some minor inconvenience due to, for instance, a slon(1) running at a non-preferred
site, and either failing due to lack of network connectivity (in which no damage is done!) or running a bit less efficiently
than it might have due to living at the wrong end of the network “pipe.”

On the other hand, if you are running a log shipping node at the remote site, accidentally introducing a slon(1) that
isn’t collecting logs could ruin your whole week.

The file layout set up by mkslonconf.sh was specifically set up to allow managing slon(1)s across a multiplicity of clusters
using the script in the following section...

6.1.3 start_slon.sh

This rc.d-style script was introduced in Slony-I version 2.0; it provides automatable ways of:

• Starting the slon(1), via start_slon.sh start

Attempts to start the slon(1), checking first to verify that it is not already running, that configuration exists, and that the log file
location is writable. Failure cases include:

• No slon runtime configuration file exists,

• A slon(1) is found with the PID indicated via the runtime configuration,

• The specified SLON_LOG location is not writable.

• Stopping the slon(1), via start_slon.sh stop
This fails (doing nothing) if the PID (indicated via the runtime configuration file) does not exist;

• Monitoring the status of the slon(1), via start_slon.sh status
This indicates whether or not the slon(1) is running, and, if so, prints out the process ID.

The following environment variables are used to control slon(1) configuration:

SLON_BIN_PATH

This indicates where the slon(1) binary program is found.

Slony-I 2.1.4 Documentation 73 / 263

SLON_CONF

This indicates the location of the slon runtime configuration file that controls how the slon(1) behaves.

Note that this file is required to contain a value for log_pid_file; that is necessary to allow this script to detect whether the
slon(1) is running or not.

SLON_LOG

This file is the location where slon(1) log files are to be stored, if need be. There is an option slon_conf_syslog for slon(1)
to use syslog to manage logging; in that case, you may prefer to set SLON_LOG to /dev/null.

Note that these environment variables may either be set, in the script, or overridden by values passed in from the environment.
The latter usage makes it easy to use this script in conjunction with the regression tests so that it is regularly tested.

6.1.4 launch_clusters.sh

This is another shell script which uses the configuration as set up by mkslonconf.sh and is intended to support an approach
to running Slony-I involving regularly (e.g. via a cron process) checking to ensure that slon(1) processes are running.

It uses the following environment variables:

• PATH which needs to contain, preferably at the beginning, a path to the slon(1) binaries that should be run.

• SLHOME indicates the “home” directory for slon(1) configuration files; they are expected to be arranged in subdirectories, one
for each cluster, with filenames of the form node1.conf, node2.conf, and such

The script uses the command find $SLHOME/$cluster/conf -name "node[0-9]*.conf" to find slon(1) configuration files.

If you remove some of these files, or rename them so their names do not conform to the find command, they won’t be found;
that is an easy way to drop nodes out of this system.

• LOGHOME indicates the “home” directory for log storage.

This script does not assume the use of the Apache log rotator to manage logs; in that PostgreSQL version 8 does its own log
rotation, it seems undesirable to retain a dependancy on specific log rotation “technology.”

• CLUSTERS is a list of Slony-I clusters under management.

In effect, you could run this every five minutes, and it would launch any missing slon(1) processes.

6.1.5 slony1_extract_schema.sh

You may find that you wish to create a new node some time well after creating a cluster. The script slony1_extract_
schema.sh will help you with this.

A command line might look like the following:

PGPORT=5881 PGHOST=master.int.example.info ./slony1_extract_schema.sh payroll payroll temppayroll

It performs the following:

• It dumps the origin node’s schema, including the data in the Slony-I cluster schema.

Note that the extra environment variables PGPORT and PGHOST to indicate additional information about where the database
resides.

• This data is loaded into the freshly created temporary database, temppayroll

• The table and sequence OIDs in Slony-I tables are corrected to point to the temporary database’s configuration.

• A slonik script is run to perform SLONIK UNINSTALL NODE(7) on the temporary database. This eliminates all the special
Slony-I tables, schema, and removes Slony-I triggers from replicated tables.

• Finally, pg_dump is run against the temporary database, delivering a copy of the cleaned up schema to standard output.

Slony-I 2.1.4 Documentation 74 / 263

6.1.6 slony-cluster-analysis

If you are running a lot of replicated databases, where there are numerous Slony-I clusters, it can get painful to track and document
this. The following tools may be of some assistance in this.

slony-cluster-analysis.sh is a shell script intended to provide some over-time analysis of the configuration of a Slony-I cluster.
You pass in the usual libpq environment variables (PGHOST, PGPORT, PGDATABASE, and such) to connect to a member of a
Slony-I cluster, and pass the name of the cluster as an argument.

The script then does the following:

• Runs a series of queries against the Slony-I tables to get lists of nodes, paths, sets, and tables.

• This is stowed in a temporary file in /tmp

• A comparison is done between the present configuration and the configuration the last time the tool was run. If the configuration
differs, an email of the difference (generated using diff) is sent to a configurable email address.

• If the configuration has changed, the old configuration file is renamed to indicate when the script noticed the change.

• Ultimately, the current configuration is stowed in LOGDIR in a filename like cluster.last

There is a sample “wrapper” script, slony-cluster-analysis-mass.sh, which sets things up to point to a whole bunch
of Slony-I clusters.

This should make it easier for a group of DBAs to keep track of two things:

• Documenting the current state of system configuration.

• Noticing when configuration changes.

6.1.7 Generating slonik scripts using configure-replication.sh

The tools script configure-replication.sh is intended to automate generating slonik scripts to configure replication.

This script uses a number (possibly large, if your configuration needs to be particularly complex) of environment variables
to determine the shape of the configuration of a cluster. It uses default values extensively, and in many cases, relatively few
environment values need to be set in order to get a viable configuration.

6.1.7.1 Global Values

There are some values that will be used universally across a cluster:

CLUSTER Name of Slony-I cluster

NUMNODES Number of nodes to set up

PGUSER name of PostgreSQL user controlling replication

Traditionally, people have used a database superuser for this, but that is not necessary as discussed Section 5.7.2

PGPORT default port number

PGDATABASE default database name

TABLES a list of fully qualified table names (e.g. - complete with namespace, such as public.my_table)

SEQUENCES a list of fully qualified sequence names (e.g. - complete with namespace, such as public.my_sequence)

Defaults are provided for all of these values, so that if you run configure-replication.sh without setting any environ-
ment variables, you will get a set of slonik scripts. They may not correspond, of course, to any database you actually want to
use...

Slony-I 2.1.4 Documentation 75 / 263

6.1.7.2 Node-Specific Values

For each node, there are also four environment variables; for node 1:

DB1 database to connect to

USER1 superuser to connect as

PORT1 port

HOST1 host

It is quite likely that DB*, USER*, and PORT* should be drawn from the global PGDATABASE, PGUSER, and PGPORT values
above; having the discipline of that sort of uniformity is usually a good thing.

In contrast, HOST* values should be set explicitly for HOST1, HOST2, ..., as you don’t get much benefit from the redundancy
replication provides if all your databases are on the same server!

6.1.7.3 Resulting slonik scripts

slonik config files are generated in a temp directory under /tmp. The usage is thus:

• preamble.slonik is a “preamble” containing connection info used by the other scripts.

Verify the info in this one closely; you may want to keep this permanently to use with future maintenance you may want to do
on the cluster.

• create_nodes.slonik

This is the first script to run; it sets up the requested nodes as being Slony-I nodes, adding in some Slony-I-specific config
tables and such.

You can/should start slon processes any time after this step has run.

• store_paths.slonik

This is the second script to run; it indicates how the slon(1)s should intercommunicate. It assumes that all slon(1)s can talk to
all nodes, which may not be a valid assumption in a complexly-firewalled environment. If that assumption is untrue, you will
need to modify the script to fix the paths.

• create_set.slonik

This sets up the replication set consisting of the whole bunch of tables and sequences that make up your application’s database
schema.

When you run this script, all that happens is that triggers are added on the origin node (node #1) that start collecting updates;
replication won’t start until #5...

There are two assumptions in this script that could be invalidated by circumstances:

– That all of the tables and sequences have been included.
This becomes invalid if new tables get added to your schema and don’t get added to the TABLES list.

– That all tables have been defined with primary keys.
Best practice is to always have and use true primary keys. If you have tables that require choosing a candidate primary key,
you will have to modify this script by hand to accomodate that.

• subscribe_set_2.slonik

And 3, and 4, and 5, if you set the number of nodes higher...

This is the step that “fires up” replication.

The assumption that the script generator makes is that all the subscriber nodes will want to subscribe directly to the origin
node. If you plan to have “sub-clusters,” perhaps where there is something of a “master” location at each data centre, you may
need to revise that.

The slon processes really ought to be running by the time you attempt running this step. To do otherwise would be rather
foolish.

Slony-I 2.1.4 Documentation 76 / 263

6.1.8 slon.in-profiles

In the tools area, slon.in-profiles is a script that might be used to start up slon(1) instances at the time of system
startup. It is designed to interact with the FreeBSD Ports system.

6.1.9 duplicate-node.sh

In the tools area, duplicate-node.sh is a script that may be used to help create a new node that duplicates one of the
ones in the cluster.

The script expects the following parameters:

• Cluster name

• New node number

• Origin node

• Node being duplicated

• New node

For each of the nodes specified, the script offers flags to specify libpq-style parameters for PGHOST, PGPORT, PGDATABASE,
and PGUSER; it is expected that .pgpass will be used for storage of passwords, as is generally considered best practice. Those
values may inherit from the libpq environment variables, if not set, which is useful when using this for testing. When “used in
anger,” however, it is likely that nearly all of the 14 available parameters should be used.

The script prepares files, normally in /tmp, and will report the name of the directory that it creates that contain SQL and slonik(1)
scripts to set up the new node.

• schema.sql

This is drawn from the origin node, and contains the “pristine” database schema that must be applied first.

• slonik.preamble

This “preamble” is used by the subsequent set of slonik scripts.

• step1-storenode.slonik

A slonik(1) script to set up the new node.

• step2-storepath.slonik

A slonik(1) script to set up path communications between the provider node and the new node.

• step3-subscribe-sets.slonik

A slonik(1) script to request subscriptions for all replications sets.

For testing purposes, this is sufficient to get a new node working. The configuration may not necessarily reflect what is desired
as a final state:

• Additional communications paths may be desirable in order to have redundancy.

• It is assumed, in the generated scripts, that the new node should support forwarding; that may not be true.

• It may be desirable later, after the subscription process is complete, to revise subscriptions.

Slony-I 2.1.4 Documentation 77 / 263

6.1.10 slonikconfdump.sh

The tool tools/slonikconfdump.sh was created to help dump out a slonik(1) script to duplicate the configuration of a
functioning Slony-I cluster. It should be particularly useful when upgrading Slony-I to version 2.0; see Section 5.4.4 for more
details.

It dumps out:

• Cluster name

• Node connection information

Note that it uses the first value it finds (e.g. - for the lowest numbered client node).

• Nodes

• Sets

• Tables

• Sequences

• Subscriptions

Note that the subscriptions are ordered by set, then by provider, then by receiver. This ordering does not necessarily indicate
the order in which subscriptions need to be applied.

It may be run as follows:

chris@dba2:Slony-I/CMD/slony1-2.0/tools> SLONYCLUSTER=slony_regress1 PGDATABASE= ←↩
slonyregress1 bash slonikconfdump.sh

building slonik config files for cluster slony_regress1
generated by: slonikconfdump.sh
Generated on: Tue Jun 9 17:34:12 EDT 2009
cluster name=slony_regress1;
include <admin-conninfos.slonik>; # Draw in ADMIN CONNINFO lines
node 1 admin conninfo=’dbname=slonyregress1 host=localhost user=chris port=7083’;
node 2 admin conninfo=’dbname=slonyregress2 host=localhost user=chris port=7083’;
init cluster (id=1, comment=’Regress test node’);
store node (id=2, comment=’node 2’);
store path (server=1, client=2, conninfo=’dbname=slonyregress1 host=localhost user=chris ←↩

port=7083’, connretry=10);
store path (server=2, client=1, conninfo=’dbname=slonyregress2 host=localhost user=chris ←↩

port=7083’, connretry=10);
create set (id=1, origin=1, comment=’All test1 tables’);
set add table (id=1, set id=1, origin=1, fully qualified name=’"public"."table1"’, comment ←↩

=’accounts table, key=’table1_pkey’);
set add table (id=2, set id=1, origin=1, fully qualified name=’"public"."table2"’, comment ←↩

=’public.table2, key=’table2_id_key’);
set add table (id=4, set id=1, origin=1, fully qualified name=’"public"."table4"’, comment ←↩

=’a table of many types, key=’table4_pkey’);
set add table (id=5, set id=1, origin=1, fully qualified name=’"public"."table5"’, comment ←↩

=’a table with composite PK strewn across the table, key=’table5_pkey’);
subscribe set (id=1, provider=1, receiver=2, forward=YES);
chris@dba2:Slony-I/CMD/slony1-2.0/tools>

The output should be reviewed before it is applied elsewhere. Particular attention should be paid to the ADMIN CONNINFO,
as it picks the first value that it sees for each node; in a complex environment, where visibility of nodes may vary from subnet to
subnet, it may not pick the right value. In addition, SUBSCRIBE SET statements do not necessarily indicate the order in which
subscriptions need to be applied.

Slony-I 2.1.4 Documentation 78 / 263

6.1.11 Parallel to Watchdog: generate_syncs.sh

A new script for Slony-I 1.1 is generate_syncs.sh, which addresses the following kind of situation.

Supposing you have some possibly-flakey server where the slon daemon that might not run all the time, you might return from a
weekend away only to discover the following situation.

On Friday night, something went “bump” and while the database came back up, none of the slon daemons survived. Your online
application then saw nearly three days worth of reasonably heavy transaction load.

When you restart slon on Monday, it hasn’t done a SYNC on the master since Friday, so that the next “SYNC set” comprises all
of the updates between Friday and Monday. Yuck.

If you run generate_syncs.sh as a cron job every 20 minutes, it will force in a periodic SYNC on the origin, which means that
between Friday and Monday, the numerous updates are split into more than 100 syncs, which can be applied incrementally,
making the cleanup a lot less unpleasant.

Note that if SYNCs are running regularly, this script won’t bother doing anything.

6.2 Slony-I Watchdog

6.2.1 Watchdogs: Keeping Slons Running

There are a couple of “watchdog” scripts available that monitor things, and restart the slon processes should they happen to die
for some reason, such as a network “glitch” that causes loss of connectivity.

You might want to run them...

The “best new way” of managing slon(1) processes is via the combination of Section 6.1.2, which creates a configuration file for
each node in a cluster, and Section 6.1.4, which uses those configuration files.

This approach is preferable to elder “watchdog” systems in that you can very precisely “nail down,” in each config file, the exact
desired configuration for each node, and not need to be concerned with what options the watchdog script may or may not give
you. This is particularly important if you are using log shipping, where forgetting the -a option could ruin your log shipped node,
and thereby your whole day.

6.3 Testing Slony-I State

6.3.1 test_slony_state

In the tools directory, you will find Section 5.1.1 scripts called test_slony_state.pl and test_slony_state-dbi.
pl. One uses the Perl/DBI interface; the other uses the Pg interface.

Both do essentially the same thing, namely to connect to a Slony-I node (you can pick any one), and from that, determine all
the nodes in the cluster. They then run a series of queries (read only, so this should be quite safe to run) which examine various
Slony-I tables, looking for a variety of sorts of conditions suggestive of problems, including:

• Bloating of tables like pg_listener, sl_log_1, sl_log_2, sl_seqlog

• Listen paths

• Analysis of Event propagation

• Analysis of Event confirmation propagation

If communications is a little broken, replication may happen, but confirmations may not get back, which prevents nodes from
clearing out old events and old replication data.

Running this once an hour or once a day can help you detect symptoms of problems early, before they lead to performance
degradation.

Slony-I 2.1.4 Documentation 79 / 263

6.3.2 Replication Test Scripts

In the directory tools may be found four scripts that may be used to do monitoring of Slony-I instances:

• test_slony_replication is a Perl script to which you can pass connection information to get to a Slony-I node. It then queries
sl_path and other information on that node in order to determine the shape of the requested replication set.

It then injects some test queries to a test table called slony_test which is defined as follows, and which needs to be added
to the set of tables being replicated:

CREATE TABLE slony_test (
description text,
mod_date timestamp with time zone,
"_Slony-I_testcluster_rowID" bigint DEFAULT nextval(’"_testcluster".sl_rowid_seq’:: ←↩

text) NOT NULL
);

The last column in that table was defined by Slony-I as one lacking a primary key...

This script generates a line of output for each Slony-I node that is active for the requested replication set in a file called
cluster.fact.log.

There is an additional finalquery option that allows you to pass in an application-specific SQL query that can determine
something about the state of your application.

• log.pm is a Perl module that manages logging for the Perl scripts.

• run_rep_tests.sh is a “wrapper” script that runs test_slony_replication.

If you have several Slony-I clusters, you might set up configuration in this file to connect to all those clusters.

• nagios_slony_test is a script that was constructed to query the log files so that you might run the replication tests every so
often (we run them every 6 minutes), and then a system monitoring tool such as Nagios can be set up to use this script to query
the state indicated in those logs.

It seemed rather more efficient to have a cron job run the tests and have Nagios check the results rather than having Nagios run
the tests directly. The tests can exercise the whole Slony-I cluster at once rather than Nagios invoking updates over and over
again.

6.3.3 Other Replication Tests

The methodology of the previous section is designed with a view to minimizing the cost of submitting replication test queries;
on a busy cluster, supporting hundreds of users, the cost associated with running a few queries is likely to be pretty irrelevant,
and the setup cost to configure the tables and data injectors is pretty high.

Three other methods for analyzing the state of replication have stood out:

• For an application-oriented test, it has been useful to set up a view on some frequently updated table that pulls application-
specific information.

For instance, one might look either at some statistics about a most recently created application object, or an application
transaction. For instance:

create view replication_test as select now() - txn_time as age, object_name from transaction_table order by txn_time
desc limit 1;
create view replication_test as select now() - created_on as age, object_name from object_table order by id desc limit

1;
There is a downside: This approach requires that you have regular activity going through the system that will lead to there
being new transactions on a regular basis. If something breaks down with your application, you may start getting spurious
warnings about replication being behind, despite the fact that replication is working fine.

• The Slony-I-defined view, sl_status provides information as to how up to date different nodes are. Its contents are only
really interesting on origin nodes, as the events generated on other nodes are generally ignorable.

• See also the Section 5.1.3 discussion.

http://www.nagios.org/

Slony-I 2.1.4 Documentation 80 / 263

6.4 Log Files

slon(1) daemons generate some more-or-less verbose log files, depending on what debugging level is turned on. You might
assortedly wish to:

• Use a log rotator like Apache rotatelogs to have a sequence of log files so that no one of them gets too big;

• Purge out old log files, periodically.

6.5 mkservice

6.5.1 slon-mkservice.sh

Create a slon service directory for use with svscan from daemontools. This uses multilog in a pretty basic way, which seems
to be standard for daemontools / multilog setups. If you want clever logging, see logrep below. Currently this script has very
limited error handling capabilities.

For non-interactive use, set the following environment variables. BASEDIR SYSUSR PASSFILE DBUSER HOST PORT DATA
BASE CLUSTER SLON_BINARY If any of the above are not set, the script asks for configuration information interactively.

• BASEDIR where you want the service directory structure for the slon to be created. This should not be the /var/service
directory.

• SYSUSR the unix user under which the slon (and multilog) process should run.

• PASSFILE location of the .pgpass file to be used. (default ~sysusr/.pgpass)

• DBUSER the postgres user the slon should connect as (default slony)

• HOST what database server to connect to (default localhost)

• PORT what port to connect to (default 5432)

• DATABASE which database to connect to (default dbuser)

• CLUSTER the name of your Slony1 cluster? (default database)

• SLON_BINARY the full path name of the slon binary (default which slon)

6.5.2 logrep-mkservice.sh

This uses tail -F to pull data from log files allowing you to use multilog filters (by setting the CRITERIA) to create special
purpose log files. The goal is to provide a way to monitor log files in near realtime for “interesting” data without either hacking
up the initial log file or wasting CPU/IO by re-scanning the same log repeatedly.

For non-interactive use, set the following environment variables. BASEDIR SYSUSR SOURCE EXTENSION CRITERIA If any
of the above are not set, the script asks for configuration information interactively.

• BASEDIR where you want the service directory structure for the logrep to be created. This should not be the /var/service
directory.

• SYSUSR unix user under which the service should run.

• SOURCE name of the service with the log you want to follow.

• EXTENSION a tag to differentiate this logrep from others using the same source.

• CRITERIA the multilog filter you want to use.

Slony-I 2.1.4 Documentation 81 / 263

A trivial example of this would be to provide a log file of all slon ERROR messages which could be used to trigger a nagios
alarm. EXTENSION=’ERRORS’ CRITERIA="’-*’ ’+* * ERROR*’" (Reset the monitor by rotating the log using svc -a
$svc_dir)

A more interesting application is a subscription progress log. EXTENSION=’COPY’ CRITERIA="’-*’ ’+* * ERROR*’ ’+*
* WARN*’ ’+* * CONFIG enableSubscription*’ ’+* * DEBUG2 remoteWorkerThread_* prepare to copy table*’ ’+*
* DEBUG2 remoteWorkerThread_* all tables for set * found on subscriber*’ ’+* * DEBUG2 remoteWorkerThread_*
copy*’ ’+* * DEBUG2 remoteWorkerThread_* Begin COPY of table*’ ’+* * DEBUG2 remoteWorkerThread_* * bytes
copied for table*’ ’+* * DEBUG2 remoteWorkerThread_* * seconds to*’ ’+* * DEBUG2 remoteWorkerThread_* set
last_value of sequence*’ ’+* * DEBUG2 remoteWorkerThread_* copy_set*’"

If you have a subscription log then it’s easy to determine if a given slon is in the process of handling copies or other subscription
activity. If the log isn’t empty, and doesn’t end with a "CONFIG enableSubscription: sub_set:1" (or whatever set number
you’ve subscribed) then the slon is currently in the middle of initial copies.

If you happen to be monitoring the mtime of your primary slony logs to determine if your slon has gone brain-dead, checking
this is a good way to avoid mistakenly clobbering it in the middle of a subscribe. As a bonus, recall that since the the slons are
running under svscan, you only need to kill it (via the svc interface) and let svscan start it up again laster. I’ve also found the
COPY logs handy for following subscribe activity interactively.

6.6 Slony-I Test Suites

Slony-I has had (thus far) three test suites:

• Ducttape tests

These were introduced as part of the original Slony-I distribution, and induced load via running pgbench.

Unfortunately, the tests required human intervention to control invocation and shutdown of tests, so running them could not be
readily automated.

• Test bed framework

Slony-I version 1.1.5, introduced a test framework intended to better support automation of the tests. It eliminated the use of
xterm, and tests were self-contained and self-controlled, so that one could run a series of tests.

Unfortunately, the framework did not include any way of inducing distributed load, so as to test scenarios involving sophisti-
cated concurrent activity.

• clustertest framework

Introduced during testing of Slony-I version 2.0 during 2010, and released in early 2011, this framework is intended to be a
better replacement for all of the preceding test frameworks.

6.7 Clustertest Test Framework

6.7.1 Introduction and Overview

The clustertest framework is implemented in Java, where tests are implemented in the interpreted JavaScript language. The
use of Java made it much easier to implement tests involving concurrent activities, both in terms of inducing test load, and in,
concurrently changing configuration of the replication cluster.

It consists of two physical portions:

• A framework, implemented in Java

This software is available at clustertest-framework @ GitHub .

This framework makes use of libraries from several other open source projects:

https://github.com/clustertest/clustertest-framework

Slony-I 2.1.4 Documentation 82 / 263

– js.jar

This is for org.mozilla.javascript, the Mozilla JavaScript interpreter

– junit-4.8.1.jar

JUnit, a unit test framework.

– log4j-1.2.15.jar

Log4J is a popular Java-based framework for generating event logs.

– postgresql-8.4-701.jdbc3.jar

This is the PostgreSQL JDBC driver.

To build the framework, it is necessary to have a Java compiler and the build tool, Ant, installed. To build all the .jar files
used by the framework, one will run the command, with output similar to the following:

% ant jar
Buildfile: /var/lib/postgresql/PostgreSQL/clustertest-framework/build.xml

compile-common:
[mkdir] Created dir: /var/lib/postgresql/PostgreSQL/clustertest-framework/build/ ←↩

classes
[javac] /var/lib/postgresql/PostgreSQL/clustertest-framework/build.xml:23: warning: ’ ←↩

includeantruntime’ was not set, defaulting to build.sysclasspath=last; set to ←↩
false for repeatable builds

compile-testcoordinator:
[javac] /var/lib/postgresql/PostgreSQL/clustertest-framework/build.xml:44: warning: ’ ←↩

includeantruntime’ was not set, defaulting to build.sysclasspath=last; set to ←↩
false for repeatable builds

[javac] Compiling 25 source files to /var/lib/postgresql/PostgreSQL/clustertest- ←↩
framework/build/classes

[javac] Note: /var/lib/postgresql/PostgreSQL/clustertest-framework/src/info/slony/ ←↩
clustertest/testcoordinator/script/ClientScript.java uses or overrides a ←↩
deprecated API.

[javac] Note: Recompile with -Xlint:deprecation for details.
© Copying 1 file to /var/lib/postgresql/PostgreSQL/clustertest-framework/build/ ←↩

classes/info/slony/clustertest/testcoordinator

jar-common:
[mkdir] Created dir: /var/lib/postgresql/PostgreSQL/clustertest-framework/build/jar
[jar] Building MANIFEST-only jar: /var/lib/postgresql/PostgreSQL/clustertest- ←↩

framework/build/jar/clustertest-common.jar

compile-client:
[javac] /var/lib/postgresql/PostgreSQL/clustertest-framework/build.xml:30: warning: ’ ←↩

includeantruntime’ was not set, defaulting to build.sysclasspath=last; set to ←↩
false for repeatable builds

[javac] Compiling 1 source file to /var/lib/postgresql/PostgreSQL/clustertest- ←↩
framework/build/classes

© Copying 2 files to /var/lib/postgresql/PostgreSQL/clustertest-framework/build/ ←↩
classes/info/slony/clustertest/client

jar-client:
[jar] Building jar: /var/lib/postgresql/PostgreSQL/clustertest-framework/build/jar/ ←↩

clustertest-client.jar

jar-coordinator:
[jar] Building jar: /var/lib/postgresql/PostgreSQL/clustertest-framework/build/jar/ ←↩

clustertest-coordinator.jar

jar:

BUILD SUCCESSFUL

Slony-I 2.1.4 Documentation 83 / 263

Total time: 2 seconds

At this time, there is no “regression test” for the test framework; to validate that it works requires running tests that use it.

It includes classes supporting PostgreSQL- and Slony-I-specific functionality such as:

– CreateDbScript

Creates a database
– DropDbScript

Drops a database
– LogShippingDaemon

Starts up Slony-I logshipping daemon
– LogShippingDumpScript

Dumps and loads logshipping-based schema
– PgCommand

Run a PostgreSQL shell command (such as psql, createdb, and such)
– PgDumpCommand

Dump a PostgreSQL database
– PsqlCommandExec

Run SQL
– ShellExecScript

Run a shell script/command
– SlonLauncher

Start up a slon(1) process
– SlonikScript

Run a slonik(1) script

• Tests integrated into the Slony-I software distribution, that consist of a combination of shell scripts, JavaScript, and SQL
scripts.

See the directory clustertest in the Slony-I software distribution, which has two sets of tests:

– Section 6.7.2
– Section 6.7.3

6.7.2 DISORDER - DIStributed ORDER test

The DISORDER or DIStributed ORDER test is intended to provide concurrency tests involving a reasonably sophisticated schema
to validate various aspects of Slony-I behavior under concurrent load.

It consists of:

• A schema for an inventory management application.

Major objects include customers, inventory items, orders, order lines, and shipments.

There are foreign key relationships between the various items, as well as triggers that maintain inventory and customer balances.
Some of these relationships involve ON DELETE CASCADE, and so some actions may induce large numbers of cascaded
updates.

• Stored procedures to induce creation of the various sorts of objects, purchases, shipments, and additions and removals of
customers and products.

• Some tests are intended to be run against replicas, validating that balances add up. We believe that PostgreSQL applies changes
in a transactional fashion such that they will always COMMIT leaving the visible state consistent; certain of the tests look for
inconsistencies.

• There are JavaScript test scripts that induce all sorts of manipulations of replication clusters to validate that replication config-
uration changes succeed and fail as expected.

Slony-I 2.1.4 Documentation 84 / 263

6.7.2.1 Configuring DISORDER

DISORDER test configuration may be found in the following files:

• conf/disorder.properties.sample

This file contains Java style properties indicating how to connect to the various databases used by the DISORDER tests,
including paths to tools such as slon(1) and slonik(1)

The sample file is to be copied to conf/disorder.properties, and customized to indicate your local configuration. By
using a .sample file, a developer may run tests within a Git tree, and not need to worry about their customizations interfering
with the “canonical” sample configuration provided.

• conf/java.conf.sample

This is a shell script containing a path indicating where the clustertest Java code (e.g. - the clustertest-coordinator.
jar file) may be found. This is also used, indirectly to determine where additional Java .jar files such as the JDBC driver are
located.

As with the disorder properties, above, this needs to be copied to conf/java.conf, and customized to indicate one’s own
local configuration.

• conf/log4j.properties

See documentation for Log4J for more details as to how this is configured; the defaults provided likely do not need to be
altered.

6.7.3 Regression Tests

These tests represent a re-coding of the tests previously implemented as shell scripts using the clustertest framework.

These tests have gradually been enhanced to provide coverage of scenarios with which Slony-I has had problems; it is to be
expected that new bugs may lead to the addition of further tests.

6.7.3.1 Configuring Regression Tests

Similar to the Section 6.7.2.1 for DISORDER tests, there are three configuration parameters:

• conf/slonyregress.properties.sample

This file contains Java style properties indicating how to connect to the various databases used by the regression tests, including
paths to tools such as slon(1) and slonik(1)

The sample file is to be copied to conf/slonyregress.properties, and customized to indicate your local configura-
tion. By using a .sample file, a developer may run tests within a Git tree, and not need to worry about their customizations
interfering with the “canonical” sample configuration provided.

• conf/java.conf.sample

This is a shell script containing a path indicating where the clustertest Java code (e.g. - the clustertest-coordinator.
jar file) may be found. This is also used, indirectly to determine where additional Java .jar files such as the JDBC driver are
located.

• conf/log4j.properties

Identical to configuration for DISORDER.

Slony-I 2.1.4 Documentation 85 / 263

6.8 Slony-I Test Bed Framework

Version 1.1.5 of Slony-I introduced a common test bed framework intended to better support running a comprehensive set of
tests at least somewhat automatically.

The new test framework is mostly written in Bourne shell, and is intended to be portable to both Bash (widely used on Linux)
and Korn shell (widely found on commercial UNIX systems). The code lives in the source tree under the tests directory.

At present, nearly all of the tests make use of only two databases that, by default, are on a single PostgreSQL postmaster on one
host. This is perfectly fine for those tests that involve verifying that Slony-I functions properly on various sorts of data. Those
tests do things like varying date styles, and creating tables and sequences that involve unusual names to verify that quoting is
being handled properly.

It is also possible to configure environment variables so that the replicated nodes will be placed on different database backends,
optionally on remote hosts, running varying versions of PostgreSQL.

Here are some of the vital files...

• run_test.sh

This is the central script for running tests. Typical usage is thus:

./run_test.sh

usage ./run_test.sh testname

You need to specify the subdirectory name of the test set to be run; each such set is stored in a subdirectory of tests.

You may need to set one or more of the following environment variables to reflect your local configuration. For instance, the
writer runs “test1” against PostgreSQL 8.0.x using the following command line:

PGBINDIR=/opt/OXRS/dbs/pgsql8/bin PGPORT=5532 PGUSER=cbbrowne ./run_test.sh test1

PGBINDIR

This determines where the test scripts look for PostgreSQL and Slony-I binaries. The default is /usr/local/pgsql/
bin.

There are also variables PGBINDIR1 thru PGBINDIR13 which allows you to specify a separate path for each database
instance. That will be particularly useful when testing interoperability of Slony-I across different versions of PostgreSQL
on different platforms. In order to create a database of each respective version, you need to point to an initdb of the
appropriate version.

PGPORT

This indicates what port the backend is on. By default, 5432 is used.

There are also variables PORT1 thru PORT13 which allow you to specify a separate port number for each database
instance. That will be particularly useful when testing interoperability of Slony-I across different versions of PostgreSQL.

PGUSER

By default, the user postgres is used; this is taken as the default user ID to use for all of the databases.

There are also variables USER1 thru USER13 which allow specifying a separate user name for each database instance.
The tests assume this to be a PostgreSQL “superuser.”

WEAKUSER

By default, the user postgres is used; this is taken as the default user ID to use for the SLONIK STORE PATH(7)
connections to all of the databases.

There are also variables WEAKUSER1 thru WEAKUSER13 which allow specifying a separate user name for each database
instance. This user does not need to be a PostgreSQL “superuser.” This user can start out with no permissions; it winds up
granted read permissions on the tables that the test uses, plus read access throughout the Slony-I schema, plus write access
to one table and sequence used to manage node locks.

Slony-I 2.1.4 Documentation 86 / 263

HOST

By default, localhost is used.

There are also variables HOST1 thru HOST13 which allow specifying a separate host for each database instance.

DB1 thru DB13
By default, slonyregress1 thru slonyregress13 are used.

You may override these from the environment if you have some reason to use different names.

ENCODING

By default, UNICODE is used, so that tests can create UTF8 tables and test the multibyte capabilities.

MY_MKTEMP_IS_DECREPIT

If your version of Linux uses a variation of mktemp that does not generate a full path to the location of the desired
temporary file/directory, then set this value.

TMPDIR

By default, the tests will generate their output in /tmp, /usr/tmp, or /var/tmp, unless you set your own value for
this environment variable.

SLTOOLDIR

Where to look for Slony-I tools such as slony1_dump.sh.

ARCHIVE[n]

If set to “true”, for a particular node, which will normally get configured out of human sight in the generic-to-a-particular-
test file settings.ik, then this node will be used as a data source for Section 4.5, and this causes the test tools to set
up a directory for the archive_dir option.

LOGSHIP[n]

If set to “true”, for a particular node, which will normally get configured out of human sight in settings.ik for a
particular test, then this indicates that this node is being created via Section 4.5, and a slon(1) is not required for this node.

SLONCONF[n]

If set to “true”, for a particular node, typically handled in settings.ik for a given test, then configuration will be set
up in a per-node slon.conf runtime config file.

SLONYTESTER

Email address of the person who might be contacted about the test results. This is stored in the SLONYTESTFILE, and
may eventually be aggregated in some sort of buildfarm-like registry.

SLONYTESTFILE

File in which to store summary results from tests. Eventually, this may be used to construct a buildfarm-like repository of
aggregated test results.

random_number and random_string
If you run make in the test directory, C programs random_number and random_string will be built which will then be
used when generating random data in lieu of using shell/SQL capabilities that are much slower than the C programs.

Within each test, you will find the following files:

• README

This file contains a description of the test, and is displayed to the reader when the test is invoked.

• generate_dml.sh

This contains script code that generates SQL to perform updates.

Slony-I 2.1.4 Documentation 87 / 263

• init_add_tables.ik

This is a slonik(1) script for adding the tables for the test to repliation.

• init_cluster.ik

slonik(1) to initialize the cluster for the test.

• init_create_set.ik

slonik(1) to initialize additional nodes to be used in the test.

• init_schema.sql

An SQL script to create the tables and sequences required at the start of the test.

• init_data.sql

An SQL script to initialize the schema with whatever state is required for the “master” node.

• init_subscribe_set.ik

A slonik(1) script to set up subscriptions.

• settings.ik

A shell script that is used to control the size of the cluster, how many nodes are to be created, and where the origin is.

• schema.diff

A series of SQL queries, one per line, that are to be used to validate that the data matches across all the nodes. Note that in
order to avoid spurious failures, the queries must use unambiguous ORDER BY clauses.

If there are additional test steps, such as running SLONIK EXECUTE SCRIPT(7), additional slonik(1) and SQL scripts may be
necessary.

Slony-I 2.1.4 Documentation 88 / 263

Part I

Reference

Slony-I 2.1.4 Documentation 89 / 263

Chapter 7

slon

slon — Slony-I daemon

Synopsis

slon [option...] [clustername] [conninfo]

Description

slon is the daemon application that “runs” Slony-I replication. A slon instance must be run for each node in a Slony-I cluster.

Options

-d log_level The log_level specifies which levels of debugging messages slon should display when logging its activity.

The nine levels of logging are:

• Fatal

• Error

• Warn

• Config

• Info

• Debug1

• Debug2

• Debug3

• Debug4

The first five non-debugging log levels (from Fatal to Info) are always displayed in the logs. In early versions of Slony-I,
the “suggested” log_level value was 2, which would list output at all levels down to debugging level 2. In Slony-I
version 2, it is recommended to set log_level to 0; most of the consistently interesting log information is generated at
levels higher than that.

Slony-I 2.1.4 Documentation 90 / 263

-s SYNC check interval The sync_interval, measured in milliseconds, indicates how often slon should check to see
if a SYNC should be introduced. Default is 2000 ms. The main loop in sync_Thread_main() sleeps for intervals of
sync_interval milliseconds between iterations.

Short sync check intervals keep the origin on a “short leash”, updating its subscribers more frequently. If you have
replicated sequences that are frequently updated without there being tables that are affected, this keeps there from being
times when only sequences are updated, and therefore no syncs take place

If the node is not an origin for any replication set, so no updates are coming in, it is somewhat wasteful for this value to be
much less the sync_interval_timeout value.

-t SYNC interval timeout At the end of each sync_interval_timeout timeout period, a SYNC will be generated
on the “local” node even if there has been no replicable data updated that would have caused a SYNC to be generated.

If application activity ceases, whether because the application is shut down, or because human users have gone home and
stopped introducing updates, the slon(1) will iterate away, waking up every sync_interval milliseconds, and, as no
updates are being made, no SYNC events would be generated. Without this timeout parameter, no SYNC events would be
generated, and it would appear that replication was falling behind.

The sync_interval_timeout value will lead to eventually generating a SYNC, even though there was no real
replication work to be done. The lower that this parameter is set, the more frequently slon(1) will generate SYNC events
when the application is not generating replicable activity; this will have two effects:

• The system will do more replication work.
(Of course, since there is no application load on the database, and no data to replicate, this load will be very easy to
handle.

• Replication will appear to be kept more “up to date.”
(Of course, since there is no replicable activity going on, being “more up to date” is something of a mirage.)

Default is 10000 ms and maximum is 120000 ms. By default, you can expect each node to “report in” with a SYNC every
10 seconds.

Note that SYNC events are also generated on subscriber nodes. Since they are not actually generating any data to replicate
to other nodes, these SYNC events are of not terribly much value.

-g group size This controls the maximum SYNC group size, sync_group_maxsize; defaults to 6. Thus, if a particular
node is behind by 200 SYNCs, it will try to group them together into groups of a maximum size of sync_group_maxs
ize. This can be expected to reduce transaction overhead due to having fewer transactions to COMMIT.

The default of 6 is probably suitable for small systems that can devote only very limited bits of memory to slon. If you have
plenty of memory, it would be reasonable to increase this, as it will increase the amount of work done in each transaction,
and will allow a subscriber that is behind by a lot to catch up more quickly.

Slon processes usually stay pretty small; even with large value for this option, slon would be expected to only grow to a
few MB in size.

The big advantage in increasing this parameter comes from cutting down on the number of transaction COMMITs; mov-
ing from 1 to 2 will provide considerable benefit, but the benefits will progressively fall off once the transactions being
processed get to be reasonably large. There isn’t likely to be a material difference in performance between 80 and 90; at
that point, whether “bigger is better” will depend on whether the bigger set of SYNCs makes the LOG cursor behave badly
due to consuming more memory and requiring more time to sortt.

In Slony-I version 1.0, slon will always attempt to group SYNCs together to this maximum, which won’t be ideal if
replication has been somewhat destabilized by there being very large updates (e.g. - a single transaction that updates
hundreds of thousands of rows) or by SYNCs being disrupted on an origin node with the result that there are a few SYNCs
that are very large. You might run into the problem that grouping together some very large SYNCs knocks over a slon
process. When it picks up again, it will try to process the same large grouped set of SYNCs, and run into the same problem
over and over until an administrator interrupts this and changes the -g value to break this “deadlock.”

In Slony-I version 1.1 and later versions, the slon instead adaptively “ramps up” from doing 1 SYNC at a time towards
the maximum group size. As a result, if there are a couple of SYNCs that cause problems, the slon will (with any relevant
watchdog assistance) always be able to get to the point where it processes the troublesome SYNCs one by one, hopefully
making operator assistance unnecessary.

Slony-I 2.1.4 Documentation 91 / 263

-o desired sync time A “maximum” time planned for grouped SYNCs.

If replication is running behind, slon will gradually increase the numbers of SYNCs grouped together, targeting that (based
on the time taken for the last group of SYNCs) they shouldn’t take more than the specified desired_sync_time value.

The default value for desired_sync_time is 60000ms, equal to one minute.

That way, you can expect (or at least hope!) that you’ll get a COMMIT roughly once per minute.

It isn’t totally predictable, as it is entirely possible for someone to request a very large update, all as one transaction, that
can “blow up” the length of the resulting SYNC to be nearly arbitrarily long. In such a case, the heuristic will back off for
the next group.

The overall effect is to improve Slony-I’s ability to cope with variations in traffic. By starting with 1 SYNC, and gradually
moving to more, even if there turn out to be variations large enough to cause PostgreSQL backends to crash, Slony-I will
back off down to start with one sync at a time, if need be, so that if it is at all possible for replication to progress, it will.

-c cleanup cycles The value vac_frequency indicates how often to VACUUM in cleanup cycles.

Set this to zero to disable slon-initiated vacuuming. If you are using something like pg_autovacuum to initiate vacuums,
you may not need for slon to initiate vacuums itself. If you are not, there are some tables Slony-I uses that collect a lot of
dead tuples that should be vacuumed frequently, notably pg_listener.

In Slony-I version 1.1, this changes a little; the cleanup thread tracks, from iteration to iteration, the earliest transaction ID
still active in the system. If this doesn’t change, from one iteration to the next, then an old transaction is still active, and
therefore a VACUUM will do no good. The cleanup thread instead merely does an ANALYZE on these tables to update
the statistics in pg_statistics.

-p PID filename pid_file contains the filename in which the PID (process ID) of the slon is stored.

This may make it easier to construct scripts to monitor multiple slon processes running on a single host.

-f config file File from which to read slon configuration.

This configuration is discussed further in Slon Run-time Configuration. If there are to be a complex set of configuration
parameters, or if there are parameters you do not wish to be visible in the process environment variables (such as pass-
words), it may be convenient to draw many or all parameters from a configuration file. You might either put common
parameters for all slon processes in a commonly-used configuration file, allowing the command line to specify little other
than the connection info. Alternatively, you might create a configuration file for each node.

-a archive directory archive_dir indicates a directory in which to place a sequence of SYNC archive files for use in
log shipping mode.

-x command to run on log archive command_on_logarchive indicates a command to be run each time a SYNC
file is successfully generated.

See more details on slon_conf_command_on_log_archive.

-q quit based on SYNC provider quit_sync_provider indicates which provider’s worker thread should be watched
in order to terminate after a certain event. This must be used in conjunction with the -r option below...

This allows you to have a slon stop replicating after a certain point.

-r quit at event number quit_sync_finalsync indicates the event number after which the remote worker thread
for the provider above should terminate. This must be used in conjunction with the -q option above...

-l lag interval lag_interval indicates an interval value such as 3 minutes or 4 hours or 2 days that indicates
that this node is to lag its providers by the specified interval of time. This causes events to be ignored until they reach the
age corresponding to the interval.

Warning
There is a concommittant downside to this lag; events that require all nodes to synchronize, as typically happens
with SLONIK FAILOVER(7) and SLONIK MOVE SET(7), will have to wait for this lagging node.
That might not be ideal behaviour at failover time, or at the time when you want to run SLONIK EXECUTE
SCRIPT(7).

Slony-I 2.1.4 Documentation 92 / 263

Exit Status

slon returns 0 to the shell if it finished normally. It returns via exit(-1) (which will likely provide a return value of either 127
or 255, depending on your system) if it encounters any fatal error.

7.1 Run-time Configuration

There are several configuration parameters that affect the behavior of the replication system. In this section, we describe how to
set the slon daemon’s configuration parameters; the following subsections discuss each parameter in detail.

All parameter names are case-insensitive. Every parameter takes a value of one of four types: boolean, integer, floating point,
or string. Boolean values may be written as ON, OFF,TRUE, FALSE, YES, NO, 1, 0 (all case-insensitive) or any unambiguous
prefix of these.

One parameter is specified per line. The equal sign between name and value is optional. Whitespace is insignificant and blank
lines are ignored. Hash marks (#) introduce comments anywhere. Parameter values that are not simple identifiers or numbers
must be single-quoted.

Some options may be set through the Command-line, these options override any conflicting settings in the configuration file.

7.2 Logging

syslog (integer) Sets up logging to syslog. If this parameter is 1, messages go both to syslog and the standard output. A value
of 2 sends output only to syslog (some messages will still go to the standard output/error). The default is 0, which means
syslog is off.

syslog_facility (string) Sets the syslog “facility” to be used when syslog enabled. Valid values are LOCAL0, LOCAL1,
LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7. The default is LOCAL0.

syslog_ident (string) Sets the program name used to identify slon messages in syslog. The default is slon.

log_level (integer) Debug log level (higher value ==> more output). Range: [0,4], default 0

There are nine log message types; using this option, some or all of the “debugging” levels may be left out of the slon logs.
In Slony-I version 2, a lot of log message levels have been revised in an attempt to ensure the “interesting stuff” comes in at
CONFIG/INFO levels, so that you could run at level 0, omitting all of the “DEBUG” messages, and still have meaningful
contents in the logs.

log_pid (boolean) Determins, if you would like the pid of the (parent) slon process to appear in each log line entry.

log_timestamp (boolean) Determines if you would like the timestamp of the event being logged to appear in each log line
entry.

Note that if syslog usage is configured, then this is ignored; it is assumed that syslog will be supplying timestamps, and
timestamps are therefore suppressed.

log_timestamp_format (string) An interval in seconds at which the remote worker thread will output the query, used to
select log rows from the data provider, together with it’s EXPLAIN query plan. The default value of 0 turns this feature
off. The allowed range is 0 (off) to 86400 (once per day).

explain_interval (integer) A strftime()-conformant format string for use if log_timestamp is enabled. The
default is “%Y-%m-%d %H:%M:%S %Z”

pid_file (string) Location and filename you would like for a file containing the Process ID of the slon process. The default
is not defined in which case no file is written.

monitor_interval (integer) Indicates the number of milliseconds the monitoring thread waits to queue up status entries
before dumping such updates into the components table.

monitor_threads (bool) Indicates whether or not the monitoring thread is to be run. The default is to do so.

Slony-I 2.1.4 Documentation 93 / 263

7.3 Connection settings

cluster_name (string) Set the cluster name that this instance of slon is running against. The default is to read it off the
command line.

conn_info (string) Set slon’s connection info; default is to read it off the command line.

sql_on_connection (string) Execute this SQL on each node at slon connect time. Useful to set logging levels, or to tune
the planner/memory settings. You can specify multiple statements by separating them with a ;

tcp_keepalive (bool) Enables sending of TCP KEEP alive requests between slon and the PostgreSQL backends. Defaults
to true.

tcp_keepalive_idle (integer) The number of seconds of idle activity after which a TCP KEEPALIVE will be sent across
the network. The tcp_keepalive parameter must be enabled for this to take effect. The default value is 0 which means use
the operating systems default. Setting this parameter has no effect on Win32 systems.

tcp_keepalive_count (integer) The number of keep alive requets to the server that need to be lost before the connection
is declared dead. tcp_keep_alive must be turned on for this parameter to take effect. The default value is 0 which means
use the operating systems default. Setting this parameter has no effect on Win32 systems.

tcp_keepalive_interval (integer) The number of seconds between TCP keep alive requests. tcp_keepalive must be
enabled for this parameter to take effect. The default value is 0 which means use the operating systems default. Setting
this parameter has no effect on Win32 systems.

7.4 Archive Logging Options

archive_dir (text) This indicates in what directory sync archive files should be stored.

command_on_logarchive (text) This indicates a Unix command to be submitted each time an archive log is successfully
generated.

The command will be passed one parameter, namely the full pathname of the archive file. Thus, supposing we have the
settings...

command_on_logarchive = /usr/local/bin/logstuff

archive_dir = /var/log/slony1/archivelogs/payroll

A typical log file might be named something like /var/log/slony1/archivelogs/payroll/slony1_log_
1_00000000000000000036.sql

The command run after that SYNC was generated would be:

/usr/local/bin/logstuff /var/log/slony1/archivelogs/payroll/slony1_log_1_00000000000000000036.
sql

Warning
Note that this is run via system(const char *COMMAND); if the program that is run takes five minutes to
run, that will defer the next SYNC by five minutes. You probably don’t want the archiving command to do much
“in-line” work.

7.5 Event Tuning

Slony-I 2.1.4 Documentation 94 / 263

sync_interval (integer) Check for updates at least this often in milliseconds. Range: [10-60000], default 100

This parameter is primarily of concern on nodes that originate replication sets. On a non-origin node, there will never be
update activity that would induce a SYNC; instead, the timeout value described below will induce a SYNC every so often
despite absence of changes to replicate.

sync_interval_timeout (integer) Maximum amount of time in milliseconds before issuing a SYNC event, This prevents
a possible race condition in which the action sequence is bumped by the trigger while inserting the log row, which makes
this bump is immediately visible to the sync thread, but the resulting log rows are not visible yet. If the SYNC is picked up
by the subscriber, processed and finished before the transaction commits, this transaction’s changes will not be replicated
until the next SYNC. But if all application activity suddenly stops, there will be no more sequence bumps, so the high
frequent -s check won’t detect that. Thus, the need for sync_interval_timeout. Range: [0-120000], default 1000

This parameter is likely to be primarily of concern on nodes that originate replication sets, though it does affect how often
events are generated on other nodes.

On a non-origin node, there never is activity to cause a SYNC to get generated; as a result, there will be a SYNC generated
every sync_interval_timeout milliseconds. There are no subscribers looking for those SYNCs, so these events
do not lead to any replication activity. They will, however, clutter sl_event up a little, so it would be undesirable for this
timeout value to be set too terribly low. 120000ms represents 2 minutes, which is not a terrible value.

The two values function together in varying ways:

On an origin node, sync_interval is the minimum time period that will be covered by a SYNC, and during periods of
heavy application activity, it may be that a SYNC is being generated every sync_interval milliseconds.

On that same origin node, there may be quiet intervals, when no replicatable changes are being submitted. A SYNC will
be induced, anyways, every sync_interval_timeout milliseconds.

On a subscriber node that does not originate any sets, only the “timeout-induced” SYNCs will occur.

sync_group_maxsize (integer) Maximum number of SYNC events that a subscriber node will group together when/if a
subscriber falls behind. SYNCs are batched only if there are that many available and if they are contiguous. Every other
event type in between leads to a smaller batch. And if there is only one SYNC available, even though you used -g600,
the slon(1) will apply just the one that is available. As soon as a subscriber catches up, it will tend to apply each SYNC by
itself, as a singleton, unless processing should fall behind for some reason. Range: [0,10000], default: 20

vac_frequency (integer) Sets how many cleanup cycles to run before a vacuum is done. 0 disables the builtin vacuum,
intended to be used with the pg_autovacuum daemon. Range: [0,100], default: 3

cleanup_interval (interval) Controls how quickly old events are trimmed out. That subsequently controls when the data
in the log tables, sl_log_1 and sl_log_2, get trimmed out. Default: ’10 minutes’.

cleanup_deletelogs (boolean) Controls whether or not we use DELETE to trim old data from the log tables, sl_log_1
and sl_log_2. Default: false

desired_sync_time (integer) Maximum time planned for grouped SYNCs. If replication is behind, slon will try to in-
crease numbers of syncs done targeting that they should take this quantity of time to process. This is in Range [10000,600000]
ms, default 60000.

If the value is set to 0, this logic will be ignored.

quit_sync_provider (integer) This must be used in conjunction with quit_sync_finalsync, and indicates which provider
node’s worker thread should be watched to see if the slon should terminate due to reaching some desired “final” event
number.

If the value is set to 0, this logic will be ignored.

quit_sync_finalsync (integer) Final event number to process. This must be used in conjunction with quit_sync_finalsync,
and allows the slon to terminate itself once it reaches a certain event for the specified provider.

If the value is set to 0, this logic will be ignored.

lag_interval (string/interval) Indicates an interval by which this node should lag its providers. If set, this is used in
the event processing loop to modify what events are to be considered for queueing; those events newer than now() -
lag_interval::interval are left out, to be processed later.

If the value is left empty, this logic will be ignored.

Slony-I 2.1.4 Documentation 95 / 263

sync_max_rowsize (integer) Size above which an sl_log_? row’s log_cmddata is considered large. Up to 500 rows of
this size are allowed in memory at once. Rows larger than that count into the sync_max_largemem space allocated and
free()’ed on demand.

The default value is 8192, meaning that your expected memory consumption (for the LOG cursor) should not exceed 8MB.

sync_max_largemem (integer) Maximum memory allocated for large rows, where log_cmddata are larger than sync_
max_rowsize.

Note that the algorithm reads rows until after this value is exceeded. Otherwise, a tuple larger than this value would stall
replication. As a result, don’t assume that memory consumption will remain smaller than this value.

The default value is 5242880.

remote_listen_timeout (integer) How long, in milliseconds, should the remote listener wait before treating the event
selection criteria as having timed out? Range: [30-30000], default 300ms

Slony-I 2.1.4 Documentation 96 / 263

Chapter 8

slonik

slonik — Slony-I command processor

Synopsis

slonik [options] [filename]

Options

-w Suppress slonik’s behaviour of automatically waiting for event confirmations before submitting events to a different node.
If this option is specified, your slonik script may require explicit SLONIK WAIT FOR EVENT(7) commands in order to
behave properly, as was the behaviour of slonik prior to version 2.1.

Description

slonik is the command processor application that is used to set up and modify configurations of Slony-I replication clusters.

Outline

The slonik command line utility is supposed to be used embedded into shell scripts; it reads commands from files or stdin.

It reads a set of Slonik statements, which are written in a scripting language with syntax similar to that of SQL, and performs the
set of configuration changes on the slony nodes specified in the script.

Nearly all of the real configuration work is actually done by calling stored procedures after loading the Slony-I support base into
a database. Slonik was created because these stored procedures have special requirements as to on which particular node in the
replication system they are called. The absence of named parameters for stored procedures makes it rather hard to do this from
the psql prompt, and psql lacks the ability to maintain multiple connections with open transactions to multiple databases.

The format of the Slonik “language” is very similar to that of SQL, and the parser is based on a similar set of formatting rules for
such things as numbers and strings. Note that slonik is declarative, using literal values throughout. It is anticipated that Slonik
scripts will typically be generated by scripts, such as Bash or Perl, and these sorts of scripting languages already have perfectly
good ways of managing variables, doing iteration, and such.

See also Slonik Command Language reference.

Slony-I 2.1.4 Documentation 97 / 263

Exit Status

slonik returns 0 to the shell if it finished normally. Scripts may specify return codes.

8.1 Slonik Command Summary

Abstract

Slonik is a command line utility designed specifically to setup and modify configurations of the Slony-I replication system.

Slony-I 2.1.4 Documentation 99 / 263

8.2 General outline

The slonik commandline utility is supposed to be used embedded into shell scripts and reads commands from files or stdin (via
here documents for example). Nearly all of the real configuration work is done by calling stored procedures after loading the
Slony-I support base into a database. You may find documentation for those procedures in the Slony-I Schema Documentation,
as well as in comments associated with them in the database.

Slonik was created because:

• The stored procedures have special requirements as to on which particular node in the replication system they are called,

• The lack of named parameters for stored procedures makes it rather difficult to do this from the psql prompt, and

• psql lacks the ability to maintain multiple connections with open transactions.

8.2.1 Commands

The slonik command language is format free. Commands begin with keywords and are terminated with a semicolon. Most
commands have a list of parameters, some of which have default values and that are therefore optional. The parameters of
commands are enclosed in parentheses. Each option consists of one or more keywords, followed by an equal sign, followed by a
value. Multiple options inside the parentheses are separated by commas. All keywords are case insensitive. The language should
remind the reader of SQL.

Option values may be:

• integer values

• string literals enclosed in single quotes

• boolean values {TRUE|ON|YES} or {FALSE|OFF|NO}

• keywords for special cases

8.2.2 Comments

Comments begin at a hash sign (#) and extend to the end of the line.

8.2.3 Command groups

Commands can be combined into groups of commands with optional on error and on success conditionals. The syntax for this
is:

try {
commands;
}
[on error { commands; }]
[on success { commands; }]

Those commands are grouped together into one transaction per participating node.

Note that this does not enforce grouping of the actions as a single transaction on all nodes. For instance, consider the following
slonik code:

try {
execute script (set id = 1, filename = ’/tmp/script1.sql’, event node=1);
execute script (set id = 1, filename = ’/tmp/script2.sql’, event node=1);

}

This would be processed within a single BEGIN/COMMIT on node 1. However, the requests are separated into two DDL_SCRIPT
events so that each will be run individually, in separate transactions, on other nodes in the cluster.

Slony-I 2.1.4 Documentation 100 / 263

Chapter 9

Slonik Meta Commands

The following commands may be used to somewhat abstract the definitions of components of Slonik scripts; SLONIK IN-
CLUDE(7) grouping configuration into central files that may be reused, and SLONIK DEFINE(7) allowing mnemonic identifiers
to replace cryptic numeric object IDs.

9.1 SLONIK INCLUDE

INCLUDE — pulling in slonik code from another file

Synopsis

include [<pathname>]

Description

This draws the specified slonik script inline into the present script. If the pathname specifies a relative path, slonik(1) will
search relative to the current working directory.

Nested include files are supported. The scanner and parser report the proper file names and line numbers when they run into an
error.

Example

include </tmp/preamble.slonik>;

Version Information

This command was introduced in Slony-I 1.1

9.2 SLONIK DEFINE

DEFINE — Defining a named symbol

Slony-I 2.1.4 Documentation 101 / 263

Synopsis

define [name] [value]

Description

This defines a named symbol. Symbol names must follow the slonik rules for constructing identifiers, by starting with a letter,
followed by letters, numbers, and underscores.

Symbol values may contain spaces and may recursively contain symbol references.

Symbols are referenced by using a “@” followed by the symbol name. Note that symbol referencing is suppressed inside string
literals.

Example

define cluster movies;
define sakai 1;
define chen 2;
define fqn fully qualified name;

cluster name = @cluster;
node @sakai admin conninfo = ’service=sakai-replication’;
node @chen admin conninfo = ’service=chen-replication’;
define setMovies id = 1;
define sakaiMovies @setMovies, origin = @sakai;

create set (@sakaiMovies, comment = ’movies’);

set add table(set @sakaiMovies, id = 1, @fqn = ’public.customers’,
comment = ’sakai customers’);

set add table(set @sakaiMovies, id = 2, @fqn = ’public.tapes’,
comment = ’sakai tapes’);

echo ’But @sakaiMovies will display as a string, and is not expanded’;

Version Information

This command was introduced in Slony-I 1.1

Slony-I 2.1.4 Documentation 102 / 263

Chapter 10

Slonik Preamble Commands

The following commands must appear as a “preamble” at the beginning of each slonik command script. They do not cause any
direct action on any of the nodes in the replication system, but affect the execution of the entire script.

10.1 SLONIK CLUSTER NAME

CLUSTER NAME — preamble - identifying Slony-I cluster

Synopsis

CLUSTER NAME = [clustername;]

Description

Must be the very first statement in every slonik script. It defines the namespace in which all Slony-I specific functions, procedures,
tables and sequences are defined. The namespace name is built by prefixing the given string literal with an underscore. This
namespace will be identical in all databases that participate in the same replication group.

No user objects are supposed to live in this namespace, and the namespace is not allowed to exist prior to adding a database to
the replication system. Thus, if you add a new node using pg_dump -s on a database that is already in the cluster of replicated
databases, you will need to drop the namespace via the SQL command DROP SCHEMA _testcluster CASCADE; .

Example

CLUSTER NAME = testcluster;

Version Information

This command was introduced in Slony-I 1.0

10.2 SLONIK ADMIN CONNINFO

ADMIN CONNINFO — preamble - identifying PostgreSQL database

Slony-I 2.1.4 Documentation 103 / 263

Synopsis

NODE ival ADMIN CONNINFO =’DSN’; [ival;] [’conninfo’]

Description

Describes how the slonik utility can reach a node’s database in the cluster from where it is run (likely the DBA’s workstation).
The conninfo string is the string agrument given to the PQconnectdb() libpq function.

The slonik utility will not try to connect to a given database unless some subsequent command requires the connection.

Note
As mentioned in the original documents, Slony-I is designed as an enterprise replication system for data centers. It has been
assumed throughout the entire development that the database servers and administrative workstations involved in replication
and/or setup and configuration activities can use simple authentication schemes like “trust”. Alternatively, libpq can read
passwords from .pgpass .

Note
If you need to change the DSN information for a node, as would happen if the IP address for a host were to change, you must
submit the new information using the SLONIK STORE PATH(7) command, and that configuration will be propagated. Existing
slon processes may need to be restarted in order to become aware of the configuration change.

Example

NODE 1 ADMIN CONNINFO = ’dbname=testdb host=server1 user=slony’;

Version Information

This command was introduced in Slony-I 1.0

Slony-I 2.1.4 Documentation 104 / 263

Chapter 11

Configuration and Action commmands

11.1 SLONIK ECHO

ECHO — Generic output tool

Synopsis

echo [’string’]

Description

Prints the string literal on standard output.

Example

ECHO ’Node 1 initialized successfully’;

Version Information

This command was introduced in Slony-I 1.0

11.2 SLONIK DATE

DATE — Display current date

Synopsis

date [(format)]

Description

Prints the current date. Accepts an optional strftime()-conformant format string.

Slony-I 2.1.4 Documentation 105 / 263

Example

DATE;
DATE(format=’%Y-%m-%d %H:%M:%S %Z’);

Version Information

This command was introduced in Slony-I 2.1

11.3 SLONIK EXIT

EXIT — Terminate Slonik script with signal

Synopsis

exit [[-]ival]

Description

Terminates script execution immediately, rolling back every open transaction on all database connections. The slonik utility will
return the given value as its program termination code. Note that on Unix, exit statuses are restricted to the range 0-255.

Example

EXIT 0;

Version Information

This command was introduced in Slony-I 1.0

11.4 SLONIK INIT CLUSTER

INIT CLUSTER — Initialize Slony-I cluster

Synopsis

INIT CLUSTER [ID = integer] [COMMENT = ’string’]

Description

Initialize the first node in a new Slony-I replication cluster. The initialization process consists of creating the cluster names-
pace, loading all the base tables, functions, procedures and initializing the node, using schemadocinitializelocalnode(p_comment
integer, p_local_node_id text) and schemadocenablenode(p_no_id integer).

ID The unique, numeric ID number of the node.

COMMENT =’comment text’ A descriptive text added to the node entry in the table sl_node.

Slony-I 2.1.4 Documentation 106 / 263

For this process to work, the SQL scripts of the Slony-I system must be installed on the DBA workstation (the computer currently
executing the slonik utility), while on the system where the node database is running the shared objects of the Slony-I system
must be installed in the PostgreSQL library directory. Also the procedural language PL/pgSQL is assumed to already be installed
in the target database.

Example

INIT CLUSTER (
ID = 1,
COMMENT = ’Node 1’

);

Note
This command functions very similarly to SLONIK STORE NODE(7), the difference being that INIT CLUSTER does not need
to draw configuration from other existing nodes.

Note
Be aware that some objects are created that contain the cluster name as part of their name. (Notably, partial indexes on
sl_log_1 and sl_log_2.) As a result, really long cluster names are a bad idea, as they can make object names “blow up”
past the typical maximum name length of 63 characters.

Locking Behaviour

This command creates a new namespace and configures tables therein; no public objects should be locked during the duration of
this.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.0

11.5 SLONIK STORE NODE

STORE NODE — Initialize Slony-I node

Synopsis

STORE NODE (options);

Slony-I 2.1.4 Documentation 107 / 263

Description

Initialize a new node and add it to the configuration of an existing cluster.

The initialization process consists of creating the cluster namespace in the new node (the database itself must already exist),
loading all the base tables, functions, procedures and initializing the node. The existing configuration of the rest of the cluster is
copied from the “event node”.

ID =ival The unique, immutable numeric ID number of the new node.

Note that the ID is immutable because it is used as the basis for inter-node event communications.

COMMENT =’description’ A descriptive text added to the node entry in the table sl_node

SPOOLNODE =boolean Specifies that the new node is a virtual spool node for file archiving of replication log. If true,
slonik will not attempt to initialize a database with the replication schema.

Warning
Never use the SPOOLNODE value - no released version of Slony-I has ever behaved in the fashion described in
the preceding fashion. Log shipping, as it finally emerged in 1.2.11, does not require initializing “spool nodes”.

EVENT NODE =ival The ID of the node used to create the configuration event that tells all existing nodes about the new
node. It must be the ID of a pre-existing node in the cluster, not the ID of the new node.

This uses schemadocinitializelocalnode(p_comment integer, p_local_node_id text) and schemadocenablenode(p_no_id integer).

Example

STORE NODE (ID = 2, COMMENT = ’Node 2’, EVENT NODE = 1);

Locking Behaviour

This command creates a new namespace and configures tables therein; no public objects should be locked during the duration of
this.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0. The SPOOLNODE parameter was introduced in version 1.1, but was vestigial in
that version. The described functionality for SPOOLNODE arrived in version 1.2, but SPOOLNODE was not used for this purpose.
In later versions, hopefully SPOOLNODE will be unavailable.

In version 2.0, the default value for EVENT NODE was removed, so a node must be specified.

11.6 SLONIK DROP NODE

DROP NODE — Remove the node from participating in the replication

Slony-I 2.1.4 Documentation 108 / 263

Synopsis

DROP NODE (options);

Description

Drop a node. This command removes the specified node entirely from the replication systems configuration. If the replication
daemon is still running on that node (and processing events), it will attempt to uninstall the replication system and terminate
itself.

ID =ival Node ID of the node to remove.

EVENT NODE =ival Node ID of the node to generate the event.

This uses schemadocdropnode(p_no_id integer).

When you invoke DROP NODE, one of the steps is to run UNINSTALL NODE.

Example

DROP NODE (ID = 2, EVENT NODE = 1);

Locking Behaviour

When dropping triggers off of application tables, this will require exclusive access to each replicated table on the node being
discarded.

Dangerous/Unintuitive Behaviour

If you are using connections that cache query plans (this is particularly common for Java application frameworks with connection
pools), the connections may cache query plans that include the pre-DROP NODE state of things, and you will get error messages
indicating missing OIDs.

After dropping a node, you may also need to recycle connections in your application.

You cannot submit this to an EVENT NODE that is the number of the node being dropped; the request must go to some node
that will remain in the cluster.

Slonik Event Confirmation Behaviour

Slonik waits until nodes (other than the one being dropped) are caught up with non-SYNC events from all other nodes before
submitting the DROP NODE command.

Version Information

This command was introduced in Slony-I 1.0

In version 2.0, the default value for EVENT NODE was removed, so a node must be specified.

11.7 SLONIK UNINSTALL NODE

UNINSTALL NODE — Decommission Slony-I node

Slony-I 2.1.4 Documentation 109 / 263

Synopsis

UNINSTALL NODE (options);

Description

Restores all tables to the unlocked state, with all original user triggers, constraints and rules, eventually added Slony-I spe-
cific serial key columns dropped and the Slony-I schema dropped. The node becomes a standalone database. The data is left
untouched.

ID =ival Node ID of the node to uninstall.

This uses schemadocuninstallnode().

The difference between UNINSTALL NODE and DROP NODE is that all UNINSTALL NODE does is to remove the Slony-I
configuration; it doesn’t drop the node’s configuration from replication.

Example

UNINSTALL NODE (ID = 2);

Locking Behaviour

When dropping triggers off of application tables, this will require exclusive access to each replicated table on the node being
discarded.

Dangerous/Unintuitive Behaviour

If you are using connections that cache query plans (this is particularly common for Java application frameworks with connection
pools), the connections may cache query plans that include the pre-UNINSTALL NODE state of things, and you will get error
messages indicating missing OIDs.

After dropping a node, you may also need to recycle connections in your application.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command

Version Information

This command was introduced in Slony-I 1.0

11.8 SLONIK RESTART NODE

RESTART NODE — Restart Slony-I node

Synopsis

RESTART NODE options;

Slony-I 2.1.4 Documentation 110 / 263

Description

Causes an eventually running replication daemon (slon process) on the specified node to shutdown and restart itself. Theoretically,
this command should be obsolete. In practice, TCP timeouts can delay critical configuration changes to actually happen in the
case where a former forwarding node failed and needs to be bypassed by subscribers.

ID =ival Node ID of the node to restart.

Example

RESTART NODE (ID = 2);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command

Version Information

This command was introduced in Slony-I 1.0; frequent use became unnecessary as of version 1.0.5. There are, however, occa-
sional cases where it is necessary to interrupt a slon process, and this allows this to be scripted via slonik.

11.9 SLONIK STORE PATH

STORE PATH — Configure Slony-I node connection

Synopsis

STORE PATH (options);

Description

Configures how the replication daemon of one node connects to the database of another node. If the replication system is
supposed to use a special backbone network segment, this is the place to user the special IP addresses or hostnames. An existing
configuration can be overwritten.

The conninfo string must contain all information to connect to the database as the replication superuser. The names “server” or
“client” have nothing to do with the particular role of a node within the cluster configuration. It should be simply viewed as “the
server” has the message or data that “the client is supposed to get.” For a simple 2 node setup, paths into both directions must be
configured.

It does not do any harm to configure path information from every node to every other node (full cross product). The connections
are not established unless they are required to actually transfer events or confirmations because of listen entries or data because
of subscriptions.

SERVER =ival Node ID of the database to connect to.

CLIENT =ival Node ID of the replication daemon connecting.

Slony-I 2.1.4 Documentation 111 / 263

CONNINFO =string PQconnectdb() argument to establish the connection.

CONNRETRY =ival Number of seconds to wait before another attempt to connect is made in case the server is unavailable.
Default is 10.

This uses schemadocstorepath(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text, p_pa_server integer).

Example

STORE PATH (SERVER = 1, CLIENT = 2,
CONNINFO = ’dbname=testdb host=server1 user=slony’

);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command

Version Information

This command was introduced in Slony-I 1.0

11.10 SLONIK DROP PATH

DROP PATH — Delete Slony-I connection information

Synopsis

DROP PATH (options);

Description

Remove the connection information between “server” and “client”.

SERVER =ival Node ID of the database to connect to.

CLIENT =ival Node ID of the replication daemon connecting.

EVENT NODE =ival The ID of the node used to create the configuration event that tells all existing nodes about dropping
the path. Defaults to the “client”, if omitted.

Example

DROP PATH (SERVER = 1, CLIENT = 2);

Slony-I 2.1.4 Documentation 112 / 263

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command

Version Information

This command was introduced in Slony-I 1.0

11.11 SLONIK STORE LISTEN

STORE LISTEN — Configure Slony-I node to indicate where to listen for events

Synopsis

STORE LISTEN (options);

Description

A “listen” entry causes a node (receiver) to query an event provider for events that originate from a specific node, as well as
confirmations from every existing node. It requires a “path” to exist so that the receiver (as client) can connect to the provider (as
server).

Every node in the system must listen for events from every other node in the system. As a general rule of thumb, a subscriber
(see SLONIK SUBSCRIBE SET(7)) should listen for events of the set’s origin on the same provider, where it receives the data
from. In turn, the origin of the data set should listen for events from the origin in the opposite direction. A node can listen for
events from one and the same origin on different providers at the same time. However, to process SYNC events from that origin,
all data providers must have the same or higher sync status, so this will not result in any faster replication behaviour.

ORIGIN =ival Node ID of the event origin the receiver is listening for.

PROVIDER =ival Node ID of the node from which the receiver gets events that come from the origin. If not specified,
default is the origin.

RECEIVER =ival The ID of the node receiving the events.

This uses schemadocstorelisten(p_receiver integer, p_provider integer, p_origin integer).

For more details, see Section 4.2.

Example

STORE LISTEN (ORIGIN = 1, RECEIVER = 2, PROVIDER = 3);

Locking Behaviour

No application-visible locking should take place.

Slony-I 2.1.4 Documentation 113 / 263

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0. As of version 1.1, you should no longer need to use this command, as listen paths
are generated automatically.

11.12 SLONIK DROP LISTEN

DROP LISTEN — Eliminate configuration indicating how Slony-I node listens for events

Synopsis

DROP LISTEN (options);

Description

Remove a “listen” configuration entry.

ORIGIN =ival Node ID of the event origin the receiver is listening for.

PROVIDER =ival Node ID of the node from which the receiver gets events that come from the origin. If not specified,
default is the origin.

RECEIVER =ival The ID of the node receiving the events.

This uses schemadocdroplisten(p_li_receiver integer, p_li_provider integer, p_li_origin integer).

Example

DROP LISTEN (ORIGIN = 1, RECEIVER = 2, PROVIDER = 3);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0. As of version 1.1, you should not need to use it anymore.

Slony-I 2.1.4 Documentation 114 / 263

11.13 SLONIK TABLE ADD KEY

TABLE ADD KEY — Add primary key for use by Slony-I for a table with no suitable key

Version Information

This command was introduced in Slony-I 1.0

In Slony-I version 2.0, this command is removed as obsolete because triggers are no longer “messed around with” in the system
catalogue.

11.14 SLONIK TABLE DROP KEY

TABLE DROP KEY — Removes a primary key added by TABLE ADD KEY

Version Information

This command was introduced in Slony-I 1.0

In Slony-I version 2.0, this command is removed as obsolete because triggers are no longer “messed around with” in the system
catalogue.

11.15 SLONIK CREATE SET

CREATE SET — Create Slony-I replication set

Synopsis

CREATE SET (options);

Description

In the Slony-I replication system, replicated tables are organized in sets. As a general rule of thumb, a set should contain all the
tables of one application, that have relationships. In a well designed application, this is equal to all the tables in one schema.

The smallest unit one node can subscribe for replication from another node is a set. A set always has an origin. In classical
replication terms, that would be the “master.” Since in Slony-I a node can be the “master” over one set, while receiving replication
data in the “slave” role for another at the same time, this terminology may easily become misleading and should therefore be
replaced with “set origin” and “subscriber”.

ID =ival ID of the set to be created.

ORIGIN =ival Initial origin node of the set.

COMMENT =’string’ A descriptive text added to the set entry.

If none is provided, a default value is set; A replication set so boring no one thought to give it a name.

This uses schemadocstoreset(p_set_comment integer, p_set_id text) .

Slony-I 2.1.4 Documentation 115 / 263

Example

CREATE SET (ID = 1,
ORIGIN = 1,
COMMENT = ’Tables for ticketing system’);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command. Slonik will also wait until any outstanding DROP SET commands are confirmed by all nodes before it submits
the CREATE SET command.

Version Information

This command was introduced in Slony-I 1.0

Until version 1.2, it would crash if no comment was provided.

11.16 SLONIK DROP SET

DROP SET — Discard Slony-I replication set

Synopsis

DROP SET (options);

Description

Drop a set of tables from the Slony-I configuration. This automatically unsubscribes all nodes from the set and restores the
original triggers and rules on all subscribers.

ID =ival ID of the set to be dropped.

ORIGIN =ival Current origin node of the set.

This uses schemadocdropset(p_set_id integer).

Example

DROP SET (ID = 5,
ORIGIN = 2);

Locking Behaviour

On each node, this will require taking out exclusive locks on each replicated table in order to modify the table schema to clean
up the triggers and rules.

Slony-I 2.1.4 Documentation 116 / 263

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0

11.17 SLONIK MERGE SET

MERGE SET — Merge Slony-I replication sets together

Synopsis

MERGE SET (options);

Description

Merge a set of tables and sequences into another one. This function is a workaround for the problem that it is not possible to
add tables/sequences to already-subscribed sets. One may create a temporary set, add the new objects to that, subscribe all nodes
currently subscribed to the other set to this new one, and then merge the two together, eliminating the set ID that was being
added.

This operation will refuse to be run if the two sets do not have exactly the same set of subscribers.

ID =ival Unique ID of the set to contain the union of the two formerly separate sets.

ADD ID =ival Unique ID of the set whose objects should be transferred into the above set.

ORIGIN =ival Current origin node for both sets.

This uses schemadocmergeset(p_add_id integer, p_set_id integer).

Example

Assuming that node 1 is the origin of set 999 that has direct subscribers 2 and 3
SUBSCRIBE SET (ID = 999, PROVIDER = 1, RECEIVER = 2);
SUBSCRIBE SET (ID = 999, PROVIDER = 1, RECEIVER = 3);
MERGE SET (ID = 1, ADD ID = 999, ORIGIN = 1);

Locking Behaviour

No application-visible locking should take place.

Dangerous/Unintuitive Behaviour

Merging takes place based on the configuration on the origin node. If a merge is requested while subscriptions are still being
processed, this can cause in-progress subscribers’ replication to break, as they’ll be looking for configuration for this set which
the merge request deletes. Do not be too quick to merge sets.

Slony-I 2.1.4 Documentation 117 / 263

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command. Slonik will also wait for any in progress subscriptions involving the ADD ID to be subscribed before submitting
the MERGE SET command.

Version Information

This command was introduced in Slony-I 1.0.5. In 1.2.1, a race condition was rectified where the merge request would be
submitted while subscriptions were still in process on subscribers; it refuses to merge before subscriptions are complete.

11.18 SLONIK SET ADD TABLE

SET ADD TABLE — Add a table to a Slony-I replication set

Synopsis

SET ADD TABLE (options);

Description

Add an existing user table to a replication set. The set cannot currently be subscribed by any other node - that functionality is
supported by the SLONIK MERGE SET(7) command.

SET ID =ival ID of the set to which the table is to be added.

ORIGIN =ival Origin node for the set. (Optional)

ID =ival Unique ID of the table. These ID’s are not only used to uniquely identify the individual table within the replica-
tion system. The numeric value of this ID also determines the order in which the tables are locked in a SLONIK LOCK
SET(7) command for example. So these numbers might represent any applicable table hierarchy to make sure the slonik
command scripts do not deadlock at any critical moment. If this parameter is omitted then slonik will check every node
that it can connect to and find the highest table id being used across all nodes.

This ID must be unique across all sets; you cannot have two tables in the same cluster with the same ID.

Note that Slony-I generates an in-memory array indicating all of the fully qualified table names; if you use large table ID
numbers, the sparsely-utilized array can lead to substantial wastage of memory. Each potential table ID consumes a pointer
to a char, commonly costing 4 bytes per table ID on 32 bit architectures, and 8 bytes per table ID on 64 bit architectures.

FULLY QUALIFIED NAME =’string’ The full table name including the name of the schema. This can be omitted if
TABLES is specified instead

KEY ={ ’string’ | SERIAL } (Optional) The index name that covers the unique and not null set of columns to be
used as the row identifier for replication purposes. Default is to use the table’s primary key. The index name is not fully
qualified; you must omit the namespace.

TABLES =’string’ A POSIX regular expression that specifies the list of tables that should be added. This regular expres-
sion is evaluated by PostgreSQL against the list of fully qualified table names on the set origin to find the tables that should
be added. If TABLES is omitted then FULLY QUALIFIED NAME must be specified.

Slony-I 2.1.4 Documentation 118 / 263

Warning
The TABLES option requires that all the tables are in “good form” to be replicated en masse. The request will
fail, not configuring any tables for replication, if it encounters any of the following problems:

• Each table must have a PRIMARY KEY defined, and a candidate primary key will not suffice.

• If a table is found that is already replicated, the request will fail.

• The TABLES option needs to automatically assign table ID values, and looks through the configuration on
every node specified by SLONIK ADMIN CONNINFO(7), finding the largest ID in use, and starting after that for
the table IDs that it assigns.

It considers it a “benign” failure to find a node that does not yet have a Slony-I schema assigned, as that may
be expected to occur if tables are configured before all the nodes have been configured using SLONIK STORE
NODE(7). If there is no Slony-I schema, then that node certainly hasn’t contributed anything to an increase in
the table IDs in use.

On the other hand, if a node specified by SLONIK ADMIN CONNINFO(7) is not available to be queried, the
request will fail.

COMMENT =’string’ A descriptive text added to the table entry.

ADD SEQUENCES=boolean A boolean value that indicates if any sequences attached to columns in this table should also be
automatically added to the replication set. This defaults to false

This uses schemadocsetaddtable(p_tab_comment integer, p_tab_idxname integer, p_fqname text, p_tab_id name, p_set_id text).

Example

SET ADD TABLE (
SET ID = 1,
ORIGIN = 1,
ID = 20,
FULLY QUALIFIED NAME = ’public.tracker_ticket’,
COMMENT = ’Support ticket’,
ADD SEQUENCES=false

);

or

SET ADD TABLE (
SET ID=1,
TABLES=’public\\.tracker*’

);

Error Messages

Here are some of the error messages you may encounter if adding tables incorrectly:

Slony-I:setAddTable_int:table public.my_table PK column id nullable Primary keys (or candi-
dates thereof) are required to have all column defined as NOT NULL. If you have a PK candidate that has columns
that are not thus restricted, Slony-I will reject the table with this message.

Slony-I:setAddTable_int:table id 14 has already been assigned! The table id, stored in sl_ta
ble.tab_id, is required to be unique across all tables/nodes/sets. Apparently you have tried to reused a table ID.

Slony-I 2.1.4 Documentation 119 / 263

Slony-I:setAddTable_int():table public.my_table has no index mt_idx_14 This will normally oc-
cur with candidate primary keys; apparently the index specified is not available on this node.

Slony-I:setAddTable_int():table public.my_table not found Worse than an index missing, the whole
table is missing. Apparently whatever process you were using to get the schema into place everywhere didn’t work
properly.

Slony-I:setAddTable_int():public.my_view is not a regular table You can only replicate (at least,
using SET ADD TABLE) objects that are ordinary tables. That doesn’t include views or indexes. (Indexes can come along
for the ride, but you don’t ask to replicate an index...)

Slony-I:setAddTable_int():set 4 not found You need to define a replication set before assigning tables to
it.

Slony-I:setAddTable():set 4 has remote origin This will occur if set 4 is configured with, as origin, node
1, and then you submit a SET ADD TABLE request involving that set to some other node than node 1. This would be
expected to occur if there was some confusion in the admin conninfo configuration in the slonik script preamble...

Slony-I:cannot add table to currently subscribed set 1 Slony-I does not support adding tables to sets
that are already participating in subscriptions. Instead, you need to define a new replication set, and add any new tables to
that set. You might then use SLONIK MERGE SET(7) to merge the new set into an existing one, if that seems appropriate.

Locking Behaviour

On the origin node, this operation requires a brief exclusive lock on the table in order to alter it to add replication triggers. On
subscriber nodes, corresponding locking takes place at the time of the SUBSCRIBE_SET event.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0

11.19 SLONIK SET ADD SEQUENCE

SET ADD SEQUENCE — Add a sequence to a Slony-I replication set

Synopsis

SET ADD SEQUENCE (options);

Description

Add an existing user sequence to a replication set. The set cannot currently be subscribed by any other node - that functionality
is supported by the SLONIK MERGE SET(7) command.

SET ID =ival ID of the set to which the sequence is to be added.

ORIGIN =ival Origin node for the set. (optional)

Slony-I 2.1.4 Documentation 120 / 263

ID =ival Unique ID of the sequence.

Note
Note that this ID needs to be unique across sequences throughout the cluster; the numbering of tables is separate, so
you might have a table with ID 20 and a sequence with ID 20, and they would be recognized as separate.

This parameter is optional. If this parameter is omitted then slonik will check every node that it can connect to and find the
highest table id being used across all nodes.

FULLY QUALIFIED NAME =’string’ The full sequence name including schema name. If SEQUENCES is specified
then FULLY QUALIFIED NAME should be omitted.

SEQUENCES =’string’ A POSIX regular expression that matches to the sequences that should be added to the replication
set. This regular expression is passed to postgresql for evaluation on the set origin against fully qualified sequence names.
This parameter is optional. If FULLY QUALIFIED NAME is omitted then SEQUENCES must be specified.

COMMENT =’string’ A descriptive text added to the sequence entry.

This uses schemadocsetaddsequence(p_seq_comment integer, p_fqname integer, p_seq_id text, p_set_id text).

Example

SET ADD SEQUENCE (
SET ID = 1,
ORIGIN = 1,
ID = 20,
FULLY QUALIFIED NAME = ’public.tracker_ticket_id_seq’,
COMMENT = ’Support ticket ID sequence’
);

or

SET ADD SEQUENCE(
SET ID=1,
SEQUENCES=’public.tracker_ticket_id_seq’
);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0

Slony-I 2.1.4 Documentation 121 / 263

11.20 SLONIK SET DROP TABLE

SET DROP TABLE — Remove a table from a Slony-I replication set

Synopsis

SET DROP TABLE (options);

Description

Drop a table from a replication set.

ORIGIN =ival Origin node for the set. A future version of slonik might figure out this information by itself.

ID =ival Unique ID of the table.

This uses schemadocsetdroptable(p_tab_id integer).

Example

SET DROP TABLE (
ORIGIN = 1,
ID = 20
);

Locking Behaviour

This operation must acquire an exclusive lock on the table being dropped from replication in order to alter it to drop the replication
trigger. On subscriber nodes, this also involves adding back any rules/triggers that have been hidden.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0.5

11.21 SLONIK SET DROP SEQUENCE

SET DROP SEQUENCE — Remove a sequence from a Slony-I replication set

Synopsis

SET DROP SEQUENCE (options);

Slony-I 2.1.4 Documentation 122 / 263

Description

Drops an existing user sequence from a replication set.

ORIGIN =ival Origin node for the set. A future version of slonik might figure out this information by itself.

ID =ival Unique ID of the sequence.

This uses schemadocsetdropsequence(p_seq_id integer).

Example

SET DROP SEQUENCE (
ORIGIN = 1,
ID = 20
);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0.5

11.22 SLONIK SET MOVE TABLE

SET MOVE TABLE — Move a table from one Slony-I replication set to another

Synopsis

SET MOVE TABLE (options);

Description

Change the set a table belongs to. The current set and the new set must origin on the same node and subscribed by the same
nodes.

Caution
Due to the way subscribing to new sets works make absolutely sure that the subscription of all nodes to the sets is
completely processed before moving tables. Moving a table too early to a new set causes the subscriber to try and add
the table already during the subscription process, which fails with a duplicate key error and breaks replication.

Slony-I 2.1.4 Documentation 123 / 263

ORIGIN =ival Current origin of the set. A future version of slonik might figure out this information by itself.

ID =ival Unique ID of the table.

NEW SET =ival Unique ID of the set to which the table should be added.

This uses schemadocsetmovetable(p_new_set_id integer, p_tab_id integer).

Example

SET MOVE TABLE (
ORIGIN = 1,
ID = 20,
NEW SET = 3

);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0.5

11.23 SLONIK SET MOVE SEQUENCE

SET MOVE SEQUENCE — Move a sequence from one Slony-I replication set to another

Synopsis

SET MOVE SEQUENCE (options);

Description

Change the set a sequence belongs to. The current set and the new set must originate on the same node and subscribed by the
same nodes.

Caution
Due to the way subscribing to new sets works make absolutely sure that the subscription of all nodes to the sets is
completely processed before moving sequences. Moving a sequence too early to a new set causes the subscriber to
try and add the sequence already during the subscription process, which fails with a duplicate key error and breaks
replication.

ORIGIN =ival Origin node for the set. A future version of slonik might figure out this information by itself.

Slony-I 2.1.4 Documentation 124 / 263

ID =ival Unique ID of the sequence.

NEW SET =ival Unique ID of the set to which the sequence should be moved.

This uses schemadocsetmovesequence(p_new_set_id integer, p_seq_id integer).

Example

SET MOVE SEQUENCE (
ORIGIN = 1,
ID = 20,
NEW SET = 3

);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0.5

11.24 SLONIK STORE TRIGGER

STORE TRIGGER — Indicate that a trigger should not be disabled by Slony-I on a subscriber node

Version Information

This command was introduced in Slony-I 1.0

In Slony-I version 2.0, this command is removed as obsolete because triggers are no longer “messed around with” in the system
catalogue.

11.25 SLONIK DROP TRIGGER

DROP TRIGGER — Return a trigger to default behavior, where it will not fire on subscriber nodes

Version Information

This command was introduced in Slony-I 1.0

In Slony-I version 2.0, this command is removed as obsolete because triggers are no longer “messed around with” in the system
catalogue.

Slony-I 2.1.4 Documentation 125 / 263

11.26 SLONIK SUBSCRIBE SET

SUBSCRIBE SET — Start replication of Slony-I set

Synopsis

SUBSCRIBE SET (options);

Description

This performs one of two actions:

• Initiates replication for a replication set

Causes a node (subscriber) to start replicating a set of tables either from the origin or from another provider node, which must
itself already be be an active, forwarding subscriber.

The application tables contained in the set must already exist and should ideally be empty. The current version of Slony-I
will not attempt to copy the schema of the set. The replication daemon will start copying the current content of the set from
the given provider and then try to catch up with any update activity that happened during that copy process. After successful
subscription, the tables are guarded on the subscriber, using triggers, against accidental updates by the application.

If the tables on the subscriber are not empty, then the COPY SET event (which is part of the subscription process) may wind
up doing more work than should be strictly necessary:

– It attempts to TRUNCATE the table, which will be efficient.

– If that fails (a foreign key relationship might prevent TRUNCATE from working), it uses DELETE to delete all “old” entries
in the table

– Those old entries clutter up the table until it is next VACUUMed after the subscription process is complete

– The indices for the table will contain entries for the old, deleted entries, which will slow the process of inserting new entries
into the index.

Warning
This operation can take a (potentially distinctly) non-zero period of time. If you have a great deal of data in a particular
set of tables, it may take hours or even (if “a great deal” indicates “tens or hundreds gigabytes of data”) possibly
multiple days for this event to complete.
The SUBSCRIBE SET request will, nonetheless, return fairly much immediately, even though the work, being handled
by the COPY SET event, is still in progress. If you need to set up subscriptions for a set of cascading nodes, you will
need to wait for each subscriber to complete subscribing before submitting requests for subscriptions that use that
node as a provider.

Slony-I: provider 2 is not an active forwarding node for replication set 1

In effect, such subscription requests will be ignored until the provider is ready.

• Revising subscription information for already-subscribed nodes.

If you need to revise subscription information for a node, you also submit the new information using this command, and the
new configuration will be propagated throughout the replication network. The normal reason to revise this information is that
you want a node to subscribe to a different provider node, or for a node to become a “forwarding” subscriber so it may later
become the provider for a later subscriber.

ID =ival ID of the set to subscribe

PROVIDER =ival Node ID of the data provider from which this node draws data.

Slony-I 2.1.4 Documentation 126 / 263

RECEIVER =ival Node ID of the new subscriber

FORWARD =boolean Flag whether or not the new subscriber should store the log information during replication to make it
possible candidate for the provider role for future nodes. Any node that is intended to be a candidate for FAILOVER must
have FORWARD = yes.

OMIT COPY =boolean Flag whether or not the subscription process should omit doing the COPY of the existing data in
the set. In effect, use this option indicates “Trust me, the data is already in sync!”

This is notably useful for the following sorts of cases:

• Major inter-version upgrades (e.g. - as from Slony-I 1.2 to 2.0) may be done quickly.

• Cloning a “master node”. SLONIK CLONE PREPARE(7)/SLONIK CLONE FINISH(7)

•

Example

SUBSCRIBE SET (
ID = 1,
PROVIDER = 1,
RECEIVER = 3,
FORWARD = YES

);
WAIT FOR EVENT(
ORIGIN=1,
CONFIRMED=ALL,
WAIT ON=1

);

Forwarding Behaviour

The FORWARD=boolean flag indicates whether the subscriber will store log information in tables sl_log_1 and sl_log_2.
Several implications fall from this...

By storing the data in these tables on the subscriber, there is some additional processing burden. If you are certain that you would
never want to SLONIK MOVE SET(7) or SLONIK FAILOVER(7) to a particular subscriber, it is worth considering turning off
forwarding on that node.

There is, however, a case where having forwarding turned off opens up a perhaps-unexpected failure condition; a rule of thumb
should be that all nodes that connect directly to the origin should have forwarding turned on. Supposing one such “direct
subscriber” has forwarding turned off, it is possible for that node to be forcibly lost in a case of failover. The problem comes if
that node gets ahead of other nodes.

Let’s suppose that the origin, node 1 is at SYNC number 88901, a non-forwarding node, node 2 has processed up to SYNC
88897, and other forwarding nodes, 3, 4, and 5, have only processed data up to SYNC 88895. At that moment, the disk system
on the origin node catches fire. Node 2 has the data up to SYNC 88897, but there is no remaining node that contains, in sl_log_1
or sl_log_2, the data for SYNCs 88896 and 88897, so there is no way to bring nodes 3-5 up to that point.

At that point, there are only two choices: To drop node 2, because there is no way to continue managing it, or to drop all nodes
but 2, because there is no way to bring them up to SYNC 88897.

That dilemma may be avoided by making sure that all nodes directly subscribing to the origin have forwarding turned on.

Slony-I 2.1.4 Documentation 127 / 263

Dangerous/Unintuitive Behaviour

• The fact that the request returns immediately even though the subscription may take considerable time to complete may be a
bit surprising.
Processing of the subscription involves two events; the SUBSCRIBE_SET, initiated on the set origin node, and an EN-
ABLE_SUBSCRIPTION. This means that SLONIK WAIT FOR EVENT(7) must be used following a SUBSCRIBE SET to
wait until the last event on the set origin completes.

• This command has two purposes; setting up subscriptions (which should be unsurprising) and revising subscriptions, which
isn’t so obvious to intuition.

• New subscriptions are set up by using DELETE or TRUNCATE to empty the table on a subscriber. If you created a new node
by copying data from an existing node, it might “seem intuitive” that that data should be kept; that is not the case - the former
contents are discarded and the node is populated from scratch.

• The OMIT COPY option has the potential to be a large “foot gun” in that it allows the administrator to push replication sets
out of sync.

Locking Behaviour

This operation does not require acquiring any locks on the provider node.

On the subscriber node, it will have the effect of locking every table in the replication set. In version 1.2 and later, exclusive
locks are acquired at the beginning of the process.

Slonik Event Confirmation Behaviour

Slonik waits until the provider has confirmed all outstanding configuration events from any other node before contacting the
provider to determine the set origin. Slonik then waits for the command submitted to the previous event node to be confirmed on
the origin before submitting this command to the origin.

Version Information

This command was introduced in Slony-I 1.0

The OMIT COPY option was introduced in Slony-I 2.0.3.

In Slony-I 2.0.5 the SUBSCRIBE SET command gets submitted directly against the set origin. Prior to this change the SUB-
SCRIBE SET was submitted against the provider

11.27 SLONIK UNSUBSCRIBE SET

UNSUBSCRIBE SET — End replication of Slony-I set

Synopsis

UNSUBSCRIBE SET (options);

Description

Stops the subscriber from replicating the set. The tables are opened up for full access by the client application on the former
subscriber. The tables are not truncated or otherwise modified. All original triggers, rules and constraints are restored.

ID =ival ID of the set to unsubscribe

RECEIVER =ival Node ID of the (former) subscriber

This uses schemadocunsubscribeset(p_sub_receiver integer, p_sub_set integer).

Slony-I 2.1.4 Documentation 128 / 263

Example

UNSUBSCRIBE SET (
ID = 1,
RECEIVER = 3

);

Locking Behaviour

Exclusive locks on each replicated table will be taken out on the subscriber in order to drop replication triggers from the tables
and restore other triggers/rules.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Dangerous/Unintuitive Behaviour

Resubscribing an unsubscribed set requires a complete fresh copy of data from the provider to be transferred since the tables have
been subject to possible independent modifications.

Version Information

This command was introduced in Slony-I 1.0

11.28 SLONIK LOCK SET

LOCK SET — Guard Slony-I replication set to prepare for MOVE SET

Synopsis

LOCK SET (options);

Description

Guards a replication set against client application updates in preparation for a SLONIK MOVE SET(7) command.

This command must be the first in a possible statement group (try). The reason for this is that it needs to commit the changes
made to the tables (adding a special trigger function) before it can wait for every concurrent transaction to finish. At the same
time it cannot hold an open transaction to the same database itself since this would result in blocking itself forever.

Note that this is a locking operation, which means that it can get stuck behind other database activity.

The operation waits for transaction IDs to advance in order that data is not missed on the new origin. Thus, if you have long-
running transactions running on the source node, this operation will wait for those transactions to complete. Unfortunately, if
you have another database on the same postmaster as the origin node, long running transactions on that database will also be
considered even though they are essentially independent.

ID =ival ID of the set to lock

ORIGIN =ival Node ID of the current set origin

This uses schemadoclockset(p_set_id integer).

Slony-I 2.1.4 Documentation 129 / 263

Example

LOCK SET (
ID = 1,
ORIGIN = 3

);

Locking Behaviour

Exclusive locks on each replicated table will be taken out on the origin node, and triggers are added to each such table that reject
table updates.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.0

11.29 SLONIK UNLOCK SET

UNLOCK SET — Unlock a Slony-I set that was locked

Synopsis

UNLOCK SET (options);

Description

Unlocks a previously locked set.

ID =ival ID of the set to unlock

ORIGIN =ival Node ID of the current set origin

This uses schemadocunlockset(p_set_id integer).

Example

UNLOCK SET (
ID = 1,
ORIGIN = 3

);

Locking Behaviour

Exclusive locks on each replicated table will be taken out on the origin node, as the triggers are removed from each table that
reject table updates.

Slony-I 2.1.4 Documentation 130 / 263

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.0

11.30 SLONIK MOVE SET

MOVE SET — Change origin of a Slony-I replication set

Synopsis

MOVE SET (options);

Description

Changes the origin of a set from one node to another. The new origin must be a current subscriber of the set. The set must
currently be locked on the old origin.

After this command, the set cannot be unlocked on the old origin any more. The old origin will continue as a forwarding
subscriber of the set and the subscription chain from the old origin to the new origin will be reversed, hop by hop. As soon as the
new origin has finished processing the event (that includes any outstanding sync events that happened before, i.e. fully catching
up), the new origin will take over and open all tables in the set for client application update activity.

This is not failover, as it requires a functioning old origin node (you needed to lock the set on the old origin). You would probably
prefer to MOVE SET instead of FAILOVER, if at all possible, as FAILOVER winds up discarding the old origin node as being
corrupted. Before MOVE SET will function a LOCK SET is needed.

Note that this is a locking operation, which means that it can get stuck behind other database activity.

ID =ival ID of the set to transfer

OLD ORIGIN =ival Node ID of the current set origin

NEW ORIGIN =ival Node ID of the new set origin

This uses schemadocmoveset(p_new_origin integer, p_set_id integer).

Example

LOCK SET (
ID = 1,
ORIGIN = 1

);
MOVE SET (

ID = 1,
OLD ORIGIN = 1,
NEW ORIGIN = 3

);

Slony-I 2.1.4 Documentation 131 / 263

Locking Behaviour

Exclusive locks on each replicated table will be taken out on both the old origin node and the new origin node, as replication
triggers are changed on both nodes: on the former origin, each table has two triggers (logtrigger and lockset) dropped and a
denyaccess trigger added; on the new origin, the denyaccess trigger is dropped and a logtrigger trigger added.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0

11.31 SLONIK FAILOVER

FAILOVER — Fail a broken replication set over to a backup node

Synopsis

FAILOVER (options);

Description

The FAILOVER command causes the backup node to take over all sets that currently originate on the failed node. slonik will
contact all other direct subscribers of the failed node to determine which node has the highest sync status for each set. If another
node has a higher sync status than the backup node, the replication will first be redirected so that the backup node replicates
against that other node, before assuming the origin role and allowing update activity.

After successful failover, all former direct subscribers of the failed node become direct subscribers of the backup node. The
failed node is abandoned, and can and should be removed from the configuration with SLONIK DROP NODE(7).

ID =ival ID of the failed node

BACKUP NODE =ival Node ID of the node that will take over all sets originating on the failed node

This uses schemadocfailednode(p_backup_node integer, p_failed_node integer).

Example

FAILOVER (
ID = 1,
BACKUP NODE = 2

);

Locking Behaviour

Exclusive locks on each replicated table will be taken out on both the new origin node as replication triggers are changed. If the
new origin was not completely up to date, and replication data must be drawn from some other node that is more up to date, the
new origin will not become usable until those updates are complete.

Slony-I 2.1.4 Documentation 132 / 263

Dangerous/Unintuitive Behaviour

This command will abandon the status of the failed node. There is no possibility to let the failed node join the cluster again
without rebuilding it from scratch as a slave. If at all possible, you would likely prefer to use SLONIK MOVE SET(7) instead,
as that does not abandon the failed node.

If there are many nodes in a cluster, and failover includes dropping out additional nodes (e.g. when it is necessary to treat all
nodes at a site including an origin as well as subscribers as failed), it is necessary to carefully sequence the actions.

Slonik Event Confirmation Behaviour

Slonik will submit the FAILOVER_EVENT without waiting but wait until the most ahead node has received confirmations of
the FAILOVER_EVENT from all nodes before completing.

Version Information

This command was introduced in Slony-I 1.0

In version 2.0, the default BACKUP NODE value of 1 was removed, so it is mandatory to provide a value for this parameter.

11.32 SLONIK EXECUTE SCRIPT

EXECUTE SCRIPT — Execute SQL/DDL script

Synopsis

EXECUTE SCRIPT (options);

Description

Executes a script containing arbitrary SQL statements on all nodes that are subscribed to a set at a common controlled point
within the replication transaction stream.

The specified event origin must be the origin of the set. The script file must not contain any START or COMMIT TRANSAC-
TION calls. (This changes somewhat in PostgreSQL 8.0 once nested transactions, aka savepoints, are supported) In addition,
non-deterministic DML statements (like updating a field with CURRENT_TIMESTAMP) must be avoided, since the data changes
done by the script are explicitly not replicated.

SET ID =ival The unique numeric ID number of the set affected by the script

FILENAME =’/path/to/file’ The name of the file containing the SQL script to execute. This might be a relative
path, relative to the location of the slonik instance you are running, or, preferably, an absolute path on the system where
slonik is to run.

The contents of the file are propagated as part of the event, so the file does not need to be accessible on any of the nodes.

EVENT NODE =ival (Mandatory unless EXECUTE ONLY ON is given) The ID of the current origin of the set. If EXE-
CUTE ONLY ON is given, EVENT NODE must specify the same node or be omitted.

EXECUTE ONLY ON =ival (Optional) The ID of the only node to actually execute the script. This option causes the
script to be propagated by all nodes but executed only by one. The default is to execute the script on all nodes that are
subscribed to the set.

Slony-I 2.1.4 Documentation 133 / 263

See also the warnings in Section 3.3.

Note that this is a potentially heavily-locking operation, which means that it can get stuck behind other database activity.

Note that if you need to make reference to the cluster name, you can use the token @CLUSTERNAME@; if you need to
make reference to the Slony-I namespace, you can use the token @NAMESPACE@; both will be expanded into the appropriate
replacement tokens.

This uses schemadocddlscript_complete(p_only_on_node integer, p_script text, p_set_id integer).

Example

EXECUTE SCRIPT (
SET ID = 1,
FILENAME = ’/tmp/changes_2008-04-01.sql’,
EVENT NODE = 1

);

Locking Behaviour

Up until the 2.0 branch, each replicated table received an exclusive lock, on the origin node, in order to remove the replication
triggers; after the DDL script completes, those locks will be cleared. In the 2.0 branch this is no longer the case. EXECUTE
SCRIPT won’t obtain any locks on your application tables though the script that you executing probably will. Due to bug #137
you should avoid concurrent writes to the tables being modified by the script while the script is running.

After the DDL script has run on the origin node, it will then run on subscriber nodes, where replicated tables will be similarly
altered to remove replication triggers, therefore requiring that exclusive locks be taken out on each node, in turn.

Slonik Event Confirmation Behaviour

Slonik waits for the command submitted to the previous event node to be confirmed on the specified event node before submitting
this command.

Version Information

This command was introduced in Slony-I 1.0.

Before Slony-I version 1.2, the entire DDL script was submitted as one PQexec() request, with the implication that the entire
script was parsed based on the state of the database before invocation of the script. This means statements later in the script
cannot depend on DDL changes made by earlier statements in the same script. Thus, you cannot add a column to a table and add
constraints to that column later in the same request.

In Slony-I version 1.2, the DDL script is split into statements, and each statement is submitted separately. As a result, it is fine for
later statements to refer to objects or attributes created or modified in earlier statements. Furthermore, in version 1.2, the slonik
output includes a listing of each statement as it is processed, on the set origin node. Similarly, the statements processed are listed
in slon logs on the other nodes.

In Slony-I version 1.0, this would only lock the tables in the specified replication set. As of 1.1 (until 2.0), all replicated tables
are locked (e.g. - triggers are removed at the start, and restored at the end). This deals with the risk that one might request DDL
changes on tables in multiple replication sets. With version 2.0 no locks on application tables are obtained by Slony-I

In version 2.0, the default value for EVENT NODE was removed, so a node must be specified.

As of version 2.0.7, the log triggers on all replicated tables are checked to ensure their parameters match the primary key on
the table. If they do not match, those tables that are exclusively locked as a result of the DDL request will have the triggers
recreated to match the primary key. Tables that do not have an exclusive lock will not be corrected, but a warning message
will be generated. The function repair_log_triggers(only_locked boolean) may be used manually to correct
the triggers on those tables.

Slony-I 2.1.4 Documentation 134 / 263

11.33 SLONIK UPDATE FUNCTIONS

UPDATE FUNCTIONS — Reload stored functions

Synopsis

UPDATE FUNCTIONS (options);

Description

Reloads stored functions for a node.

Reloads all stored procedure and function definitions in the Slony-I schema for the specified node. This command is usually part
of the Slony-I software upgrade procedure.

ID =ival The node to refresh.

Example

UPDATE FUNCTIONS (
ID = 3 # Update functions on node 3

);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.0

Oddities

Any mismatch between slonik(1) and the C libraries “living” in the PostgreSQL installation will result in this failing to do what
is expected, and, more than likely, failing to run at all. You may think you are upgrading to version 1.1.5, but if you are running
slonik(1) from version 1.1.2, or if you didn’t restart the database with a version that has 1.1.5 libraries, and instead are referencing
C stored functions from version 1.1.1, the attempt to upgrade will fail, because the sets of C functions have regularly changed
between major versions.

Before Slony-I 1.2, the error messages that would result would be not terribly informative; what you’d find, in PostgreSQL logs,
is some error message about being unable to load some stored function that happens to be implemented in C. As of 1.2, one of
the first things done is to load a stored function to verify version numbers; it complains in a much more direct fashion if you have
some versioning mismatch.

11.34 SLONIK WAIT FOR EVENT

WAIT FOR EVENT — Have Slonik script wait for previous event to complete

Slony-I 2.1.4 Documentation 135 / 263

Synopsis

WAIT FOR EVENT (options);

Description

Waits for event Confirmation.

Slonik remembers the last event generated on every node during script execution (events generated by earlier calls are currently
not checked). In certain situations it is necessary that events generated on one node (such as CREATE SET) are processed on
another node before issuing more commands (for instance, SLONIK SUBSCRIBE SET(7)). WAIT FOR EVENT may be used
to cause the slonik script to wait for confirmation of an event, which hopefully means that the subscriber node is ready for the
next action.

WAIT FOR EVENT must be called outside of any try block in order to work, since new confirm messages don’t become visible
within a transaction.

ORIGIN =ival | ALL The origin of the event(s) to wait for.

CONFIRMED =ival | ALL The node ID of the receiver that must confirm the event(s).

WAIT ON =ival The ID of the node where the sl_confirm table is to be checked.

TIMEOUT =ival The number of seconds to wait. Default is 600 (10 minutes). TIMEOUT = 0 causes the script to wait
indefinitely.

Example

WAIT FOR EVENT (
ORIGIN = ALL,
CONFIRMED = ALL,
WAIT ON = 1

);

Locking Behaviour

No application-visible locking should take place.

Version Information

This command was introduced in Slony-I 1.0

In version 2.0, the default value for WAIT ON was removed, so a node must be specified.

Oddities

Not all events return interesting results. For instance, many people have run afoul of problems with SLONIK SUBSCRIBE
SET(7), when subscribing a new set. Be aware (and beware!) that a SLONIK SUBSCRIBE SET(7) request will return the event
confirmation almost immediately, even though there might be several hours of work to do before the subscription is ready. The
trouble with SLONIK SUBSCRIBE SET(7) is that it is processed as two events, one on the origin node, with a second event, to
enable the subscription, on the subscriber.

In order to more reliably monitor from within a slonik(1) script that SLONIK SUBSCRIBE SET(7) is complete, you may submit
a SLONIK SYNC(7) event after the subscription, and have the WAIT request wait on the SYNC event, as follows.

Slony-I 2.1.4 Documentation 136 / 263

Assuming that node 1 is the origin for set 999 that has direct subscribers 2 and 3
SUBSCRIBE SET (ID = 999, PROVIDER = 1, RECEIVER = 2);
WAIT FOR EVENT (ORIGIN = 1, CONFIRMED = ALL, WAIT ON=1);
SUBSCRIBE SET (ID = 999, PROVIDER = 1, RECEIVER = 3);
WAIT FOR EVENT (ORIGIN = 1, CONFIRMED = ALL, WAIT ON=1);
MERGE SET (ID = 1, ADD ID = 999, ORIGIN = 1);

11.35 SLONIK REPAIR CONFIG

REPAIR CONFIG — Resets the name-to-oid mapping of tables in a replication set, useful for restoring a node after a pg_dump.

Synopsis

REPAIR CONFIG (options);

Description

Resets name-to-oid mapping.

SET ID =ival Which set to clean up after.

EVENT NODE =ival The node ID where this should be submitted.

EXECUTE ONLY ON =ival The ID of the only node where the mappings are to be updated. If not specified, the default
is to execute this on all nodes subscribed to the set.

Example

REPAIR CONFIG (
SET ID = 1,
EVENT NODE = 2

);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.1

11.36 SLONIK SYNC

SYNC — Generate an ordinary SYNC event

Slony-I 2.1.4 Documentation 137 / 263

Synopsis

SYNC (options);

Description

Generates a SYNC event on a specified node.

ID =ival The node on which to generate the SYNC event.

Example

SYNC (ID = 1);
WAIT FOR EVENT (ORIGIN = 1, CONFIRMED = 2, WAIT ON=1);

Locking Behaviour

No application-visible locking should take place.

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 1.1.6 / 1.2.1

11.37 SLONIK SLEEP

SLEEP — Sleep using system sleep()

Synopsis

sleep [seconds]

Description

Sleeps for the specified number of seconds.

Example

sleep (seconds = 5);

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Slony-I 2.1.4 Documentation 138 / 263

Version Information

This command was introduced in Slony-I 1.1.6 / 1.2.1.

11.38 SLONIK CLONE PREPARE

CLONE PREPARE — Prepare for cloning a node.

Synopsis

clone prepare [id] [provider] [comment]

Description

Prepares for cloning a specified subscriber node.

This duplicates the “provider” node’s configuration under a new node ID in preparation for the node to be copied via standard
database tools.

Note that in order that we be certain that this new node be consistent with all nodes, it is important to issue a SYNC event against
every node aside from the provider and wait to start copying the provider database at least until all those SYNC events have been
confirmed by the provider. Otherwise, it is possible for the clone to miss some events.

Example

clone prepare (id = 33, provider = 22, comment=’Clone 33’);
sync (id=11);
sync (id=22);

Slonik Event Confirmation Behaviour

Slonik will wait until the node being cloned (the provider) is caught up with all other nodes before submitting the clone prepare
command

Version Information

This command was introduced in Slony-I 2.0.

11.39 SLONIK CLONE FINISH

CLONE FINISH — Complete cloning a node.

Synopsis

clone finish [id] [provider]

Slony-I 2.1.4 Documentation 139 / 263

Description

Finishes cloning a specified node.

This completes the work done by SLONIK CLONE PREPARE(7), establishing confirmation data for the new “clone” based on
the status found for the “provider” node.

Example

clone finish (id = 33, provider = 22);

Slonik Event Confirmation Behaviour

Slonik does not wait for event confirmations before performing this command.

Version Information

This command was introduced in Slony-I 2.0.

Slony-I 2.1.4 Documentation 140 / 263

Chapter 12

Appendix

12.1 Frequently Asked Questions

Slony-I FAQ: Building and Installing Slony-I

1. I am using Frotznik Freenix 4.5, with its FFPM (Frotznik Freenix Package Manager) package management system. It
comes with FFPM packages for PostgreSQL 7.4.7, which are what I am using for my databases, but they don’t include
Slony-I in the packaging. How do I add Slony-I to this?

Frotznik Freenix is new to me, so it’s a bit dangerous to give really hard-and-fast definitive answers. The answers differ
somewhat between the various combinations of PostgreSQL and Slony-I versions; the newer versions generally somewhat
easier to cope with than are the older versions. In general, you almost certainly need to compile Slony-I from sources;
depending on versioning of both Slony-I and PostgreSQL, you may need to compile PostgreSQL from scratch. (Whether
you need to use the PostgreSQL compile is another matter; you probably don’t...)

• Slony-I version 1.0.5 and earlier require having a fully configured copy of PostgreSQL sources available when you
compile Slony-I.
Hopefully you can make the configuration this closely match against the configuration in use by the packaged version of
PostgreSQL by checking the configuration using the command pg_config --configure.

• Slony-I version 1.1 simplifies this considerably; it does not require the full copy of PostgreSQL sources, but can, instead,
refer to the various locations where PostgreSQL libraries, binaries, configuration, and #include files are located.

• PostgreSQL 8.0 and higher is generally easier to deal with in that a “default” installation includes all of the #include
files.
If you are using an earlier version of PostgreSQL, you may find it necessary to resort to a source installation if the
packaged version did not install the “server #include” files, which are installed by the command make install-all-
headers .

In effect, the “worst case” scenario takes place if you are using a version of Slony-I earlier than 1.1 with an “elderly” version
of PostgreSQL, in which case you can expect to need to compile PostgreSQL from scratch in order to have everything that
the Slony-I compile needs even though you are using a “packaged” version of PostgreSQL. If you are running a recent
PostgreSQL and a recent Slony-I, then the codependencies can be fairly small, and you may not need extra PostgreSQL
sources. These improvements should ease the production of Slony-I packages so that you might soon even be able to hope
to avoid compiling Slony-I.

2. I tried building Slony-I 1.1 and got the following error message:

configure: error: Headers for libpqserver are not found in the includeserverdir.
This is the path to postgres.h. Please specify the includeserverdir with
--with-pgincludeserverdir=<dir>

You are almost certainly running version PostgreSQL 7.4 or earlier, where server headers are not installed by default if you
just do a make install of PostgreSQL. You need to install server headers when you install PostgreSQL via the command
make install-all-headers.

Slony-I 2.1.4 Documentation 141 / 263

3. I’m trying to upgrade to a newer version of Slony-I and am running into a problem with SLONIK UPDATE FUNC-
TIONS(7). When I run SLONIK UPDATE FUNCTIONS(7), my postmaster falls over with a Signal 11. There aren’t any
seeming errors in the log files, aside from the PostgreSQL logs indicating that, yes indeed, the postmaster fell over. I
connected a debugger to the core file, and it indicates that it was trying to commit a transaction at the time of the failure.
By the way I’m on PostgreSQL 8.1.[0-3].

Unfortunately, early releases of PostgreSQL 8.1 had a problem where if you redefined a function (such as, say, upg
radeSchema(text)), and then, in the same transaction, ran that function, the postmaster would fall over, and the
transaction would fail to commit. The slonik(1) command SLONIK UPDATE FUNCTIONS(7) functions like that; it, in
one transaction, tries to:

• Load the new functions (from slony1_funcs.sql), notably including upgradeSchema(text).

• Run upgradeSchema(text) to do any necessary upgrades to the database schema.

• Notify slon(1) processes of a change of configuration.

Unfortunately, on PostgreSQL 8.1.0, 8.1.1, 8.1.2, and 8.1.3, this conflicts with a bug where using and modifying a plpgsql
function in the same transaction leads to a crash. Several workarounds are available.

The preferred answer would be to upgrade PostgreSQL to 8.1.4 or some later version. Changes between minor versions
do not require rebuilding databases; it should merely require copying a suitable 8.1.x build into place, and restarting the
postmaster with the new version.

If that is unsuitable, it would be possible to perform the upgrade via a series of transactions, performing the equivalent of
what slonik(1) does “by hand”:

• Take slony1_funcs.sql and do three replacements within it:

– Replace “@CLUSTERNAME@” with the name of the cluster
– Replace “@MODULEVERSION@” with the Slony-I version string, such as “1.2.10”
– Replace “@NAMESPACE@” with the “double-quoted” name of the cluster namespace, such as "_MyCluster"

• Load that “remapped” set of functions into the database.

• Run the stored function via select upgradeSchema(’1.2.7’); , assuming that the previous version of Slony-I in
use was version 1.2.7.

• Restarting all slon(1) processes would probably be a wise move with this sort of “surgery.”

4. Problem building on Fedora/x86-64 When trying to configure Slony-I on a Fedora x86-64 system, where yum was used to
install the package postgresql-libs.x86_64, the following complaint comes up:

configure: error: Your version of libpq doesn’t have PQunescapeBytea
this means that your version of PostgreSQL is lower than 7.3
and thus not supported by Slony-I.

This happened with PostgreSQL 8.2.5, which is certainly rather newer than 7.3.

configure is looking for that symbol by compiling a little program that calls for it, and checking if the compile succeeds.
On the gcc command line it uses -lpq to search for the library. Unfortunately, that package is missing a symlink, from
/usr/lib64/libpq.so to libpq.so.5.0; that is why it fails to link to libpq. The true problem is that the compiler
failed to find a library to link to, not that libpq lacked the function call. Eventually, this should be addressed by those that
manage the postgresql-libs.x86_64 package.

Note that this same symptom can be the indication of similar classes of system configuration problems. Bad symlinks, bad
permissions, bad behaviour on the part of your C compiler, all may potentially lead to this same error message. Thus, if
you see this error, you need to look in the log file that is generated, config.log. Search down to near the end, and see
what the actual complaint was. That will be helpful in tracking down the true root cause of the problem.

5. I found conflicting types for yyleng between parser.c and scan.c. In one case, it used type int, conflicting with
yy_size_t. What shall I do?

This has been observed on MacOS, where flex (which generates scan.c) and bison (which generates parser.c) di-
verged in their handling of this variable.

• You might might “hack” scan.c by hand to use the matching type.

Slony-I 2.1.4 Documentation 142 / 263

• You might select different versions of bison or flex so as to get versions whose data types match.

• Note that you may have multiple versions of bison or flex around, and might need to modify PATH in order to select the
appropriate one.

Slony-I FAQ: How Do I?

1. I need to dump a database without getting Slony-I configuration (e.g. - triggers, functions, and such).

Up to version 1.2, this is fairly nontrivial, requiring careful choice of nodes, and some moderately heavy “procedure”. One
methodology is as follows:

• First, dump the schema from the node that has the “master” role. That is the only place, pre-2.0, where you can readily
dump the schema using pg_dump and have a consistent schema. You may use the Slony-I tool Section 6.1.5 to do this.

• Take the resulting schema, which will not include the Slony-I-specific bits, and split it into two pieces:

– Firstly, the portion comprising all of the creations of tables in the schema.
– Secondly, the portion consisting of creations of indices, constraints, and triggers.

• Pull a data dump, using pg_dump --data-only, of some node of your choice. It doesn’t need to be for the “master” node.
This dump will include the contents of the Slony-I-specific tables; you can discard that, or ignore it. Since the schema
dump didn’t contain table definitions for the Slony-I tables, they won’t be loaded.

• Finally, load the three components in proper order:

– Schema (tables)
– Data dump
– Remainder of the schema

In Slony-I 2.0, the answer becomes simpler: Just take a pg_dump --exclude-schema=_Cluster against any node. In 2.0,
the schemas are no longer “clobbered” on subscribers, so a straight pg_dump will do what you want.

2. I’d like to renumber the node numbers in my cluster. How can I renumber nodes?

The first answer is “you can’t do that” - Slony-I node numbers are quite “immutable.” Node numbers are deeply woven
into the fibres of the schema, by virtue of being written into virtually every table in the system, but much more importantly
by virtue of being used as the basis for event propagation. The only time that it might be “OK” to modify a node number
is at some time where we know that it is not in use, and we would need to do updates against each node in the cluster in an
organized fashion. To do this in an automated fashion seems like a huge challenge, as it changes the structure of the very
event propagation system that already needs to be working in order for such a change to propagate.

If it is enormously necessary to renumber nodes, this might be accomplished by dropping and re-adding nodes to get rid
of the node formerly using the node ID that needs to be held by another node.

Slony-I FAQ: Impossible Things People Try

1. Can I use Slony-I to replicate changes back and forth on my database between my two offices?

At one level, it is theoretically possible to do something like that, if you design your application so that each office has
its own distinct set of tables, and you then have some system for consolidating the data to give them some common view.
However, this requires a great deal of design work to create an application that performs this consolidation.

In practice, the term for that is “multimaster replication,” and Slony-I does not support “multimaster replication.”

2. I want to replicate all of the databases for a shared-database system I am managing. There are multiple databases, being
used by my customers.

For this purpose, something like PostgreSQL PITR (Point In Time Recovery) is likely to be much more suitable. Slony-I
requires a slon process (and multiple connections) for each identifiable database, and if you have a PostgreSQL cluster
hosting 50 or 100 databases, this will require hundreds of database connections. Typically, in “shared hosting” situations,
DML is being managed by customers, who can change anything they like whenever they want. Slony-I does not work out
well when not used in a disciplined manner.

Slony-I 2.1.4 Documentation 143 / 263

3. I want to be able to make DDL changes, and have them replicated automatically.

Slony-I requires that Section 3.3 be planned for explicitly and carefully. Slony-I captures changes using triggers, and
PostgreSQL does not provide a way to use triggers to capture DDL changes.

Note
There has been quite a bit of discussion, off and on, about how PostgreSQL might capture DDL changes in a way that
would make triggers useful; nothing concrete has emerged after several years of discussion.

4. I want to split my cluster into disjoint partitions that are not aware of one another. Slony-I keeps generating Section 4.2
that link those partitions together.

The notion that all nodes are aware of one another is deeply imbedded in the design of Slony-I. For instance, its handling
of cleanup of obsolete data depends on being aware of whether any of the nodes are behind, and thus might still depend on
older data.

5. I want to change some of my node numbers. How do I “rename” a node to have a different node number?

You don’t. The node number is used to coordinate inter-node communications, and changing the node ID number “on the
fly” would make it essentially impossible to keep node configuration coordinated.

6. My application uses OID attributes; is it possible to replicate tables like this?

It is worth noting that oids, as a regular table attribute, have been deprecated since PostgreSQL version 8.1, back in 2005.
Slony-I has never collected oids to replicate them, and, with that functionality being deprecated, the developers do not
intend to add this functionality. PostgreSQL implemented oids as a way to link its internal system tables together; to use
them with application tables is considered poor practice, and it is recommended that you use sequences to populate your
own ID column on application tables.

Of course, nothing prevents you from creating a table without oids, and then add in your own application column called
oid, preferably with type information SERIAL NOT NULL UNIQUE, which can be replicated, and which is likely to
be suitable as a candidate primary key for the table.

Slony-I FAQ: Connection Issues

1. I looked for the _clustername namespace, and it wasn’t there.

If the DSNs are wrong, then slon(1) instances can’t connect to the nodes.This will generally lead to nodes remaining en-
tirely untouched.Recheck the connection configuration. By the way, since slon(1) links to libpq, you could have password
information stored in $HOME/.pgpass, partially filling in right/wrong authentication information there.

2. I created a “superuser” account, slony, to run replication activities. As suggested, I set it up as a superuser, via the
following query: update pg_shadow set usesuper = ’t’ where usename in (’slony’, ’molly’, ’dumpy’); (that command also
deals with other users I set up to run vacuums and backups). Unfortunately, I ran into a problem the next time I subscribed
to a new set.

DEBUG1 copy_set 28661
DEBUG1 remoteWorkerThread_1: connected to provider DB
DEBUG2 remoteWorkerThread_78: forward confirm 1,594436 received by 78
DEBUG2 remoteWorkerThread_1: copy table public.billing_discount
ERROR remoteWorkerThread_1: "select "_mycluster".setAddTable_int(28661, 51, ’public. ←↩

billing_discount’, ’billing_discount_pkey’, ’Table public.billing_discount with ←↩
candidate primary key billing_discount_pkey’); " PGRES_FATAL_ERROR ERROR: ←↩
permission denied for relation pg_class

CONTEXT: PL/pgSQL function "altertableforreplication" line 23 at select into variables
PL/pgSQL function "setaddtable_int" line 76 at perform
WARN remoteWorkerThread_1: data copy for set 28661 failed - sleep 60 seconds

This continues to fail, over and over, until I restarted the slon to connect as postgres instead.

The problem is fairly self-evident; permission is being denied on the system table, pg_class.

The “fix” is thus:

Slony-I 2.1.4 Documentation 144 / 263

update pg_shadow set usesuper = ’t’, usecatupd=’t’ where usename = ’slony’;

In version 8.1 and higher, you may also need the following:

update pg_authid set rolcatupdate = ’t’, rolsuper=’t’ where rolname = ’slony’;

3. I’m trying to get a slave subscribed, and get the following messages in the logs:

DEBUG1 copy_set 1
DEBUG1 remoteWorkerThread_1: connected to provider DB
WARN remoteWorkerThread_1: transactions earlier than XID 127314958 are still in ←↩

progress
WARN remoteWorkerThread_1: data copy for set 1 failed - sleep 60 seconds

There is evidently some reasonably old outstanding transaction blocking Slony-I from processing the sync. You might
want to take a look at pg_locks to see what’s up:

sampledb=# select * from pg_locks where transaction is not null order by transaction;
relation | database | transaction | pid | mode | granted
----------+----------+-------------+---------+---------------+---------

| | 127314921 | 2605100 | ExclusiveLock | t
| | 127326504 | 5660904 | ExclusiveLock | t

(2 rows)

See? 127314921 is indeed older than 127314958, and it’s still running. A long running G/L report, a runaway RT3 query, a
pg_dump, all will open up transactions that may run for substantial periods of time. Until they complete, or are interrupted,
you will continue to see the message “ data copy for set 1 failed - sleep 60 seconds ”.By the way, if there is more than
one database on the PostgreSQL cluster, and activity is taking place on the OTHER database, that will lead to there being
“transactions earlier than XID whatever” being found to be still in progress. The fact that it’s a separate database on the
cluster is irrelevant; Slony-I will wait until those old transactions terminate.

4. Same as the above. What I forgot to mention, as well, was that I was trying to add TWO subscribers, concurrently.

That doesn’t work out: Slony-I can’t work on the COPY commands concurrently. See src/slon/remote_worker.
c, function copy_set()

$ ps -aef | egrep ’[2]605100’
postgres 2605100 205018 0 18:53:43 pts/3 3:13 postgres: postgres sampledb localhost ←↩

COPY

This happens to be a COPY transaction involved in setting up the subscription for one of the nodes. All is well; the
system is busy setting up the first subscriber; it won’t start on the second one until the first one has completed subscribing.
That represents one possible cause.This has the (perhaps unfortunate) implication that you cannot populate two slaves
concurrently from a single provider. You have to subscribe one to the set, and only once it has completed setting up the
subscription (copying table contents and such) can the second subscriber start setting up the subscription.

5. We got bitten by something we didn’t foresee when completely uninstalling a slony replication cluster from the master and
slave...

Warning
MAKE SURE YOU STOP YOUR APPLICATION RUNNING AGAINST YOUR MASTER DATABASE WHEN RE-
MOVING THE WHOLE SLONY CLUSTER, or at least re-cycle all your open connections after the event!

The connections “remember” or refer to OIDs which are removed by the uninstall node script. And you will get lots of
errors as a result...

There are two notable areas of PostgreSQL that cache query plans and OIDs:

• Prepared statements

Slony-I 2.1.4 Documentation 145 / 263

• pl/pgSQL functions

The problem isn’t particularly a Slony-I one; it would occur any time such significant changes are made to the database
schema. It shouldn’t be expected to lead to data loss, but you’ll see a wide range of OID-related errors.

The problem occurs when you are using some sort of “connection pool” that keeps recycling old connections. If you restart
the application after this, the new connections will create new query plans, and the errors will go away. If your connection
pool drops the connections, and creates new ones, the new ones will have new query plans, and the errors will go away.

In our code we drop the connection on any error we cannot map to an expected condition. This would eventually recycle all
connections on such unexpected problems after just one error per connection. Of course if the error surfaces as a constraint
violation which is a recognized condition, this won’t help either, and if the problem is persistent, the connections will keep
recycling which will drop the effect of the pooling, in the latter case the pooling code could also announce an admin to
take a look...

6. I upgraded my cluster to Slony-I version 1.2. I’m now getting the following notice in the logs:

NOTICE: Slony-I: log switch to sl_log_2 still in progress - sl_log_1 not truncated

Both sl_log_1 and sl_log_2 are continuing to grow, and sl_log_1 is never getting truncated. What’s wrong?

This is symptomatic of the same issue as above with dropping replication: if there are still old connections lingering that
are using old query plans that reference the old stored functions, resulting in the inserts to sl_log_1 Closing those
connections and opening new ones will resolve the issue.

In the longer term, there is an item on the PostgreSQL TODO list to implement dependancy checking that would flush
cached query plans when dependent objects change.

7. I pointed a subscribing node to a different provider and it stopped replicating

We noticed this happening when we wanted to re-initialize a node, where we had configuration thus:

• Node 1 - provider

• Node 2 - subscriber to node 1 - the node we’re reinitializing

• Node 3 - subscriber to node 2 - node that should keep replicating

The subscription for node 3 was changed to have node 1 as provider, and we did SLONIK DROP SET(7) /SLONIK
SUBSCRIBE SET(7) for node 2 to get it repopulating.Unfortunately, replication suddenly stopped to node 3.The problem
was that there was not a suitable set of “listener paths” in sl_listen to allow the events from node 1 to propagate to node
3. The events were going through node 2, and blocking behind the SLONIK SUBSCRIBE SET(7) event that node 2 was
working on.The following slonik script dropped out the listen paths where node 3 had to go through node 2, and added in
direct listens between nodes 1 and 3.

cluster name = oxrslive;
node 1 admin conninfo=’host=32.85.68.220 dbname=oxrslive user=postgres port=5432’;
node 2 admin conninfo=’host=32.85.68.216 dbname=oxrslive user=postgres port=5432’;
node 3 admin conninfo=’host=32.85.68.244 dbname=oxrslive user=postgres port=5432’;
node 4 admin conninfo=’host=10.28.103.132 dbname=oxrslive user=postgres port=5432’;
try {
store listen (origin = 1, receiver = 3, provider = 1);
store listen (origin = 3, receiver = 1, provider = 3);
drop listen (origin = 1, receiver = 3, provider = 2);
drop listen (origin = 3, receiver = 1, provider = 2);

}

Immediately after this script was run, SYNC events started propagating again to node 3. This points out two principles:

• If you have multiple nodes, and cascaded subscribers, you need to be quite careful in populating the SLONIK STORE
LISTEN(7) entries, and in modifying them if the structure of the replication “tree” changes.

• Version 1.1 provides better tools to help manage this.

The issues of “listener paths” are discussed further at Section 4.2

8. I was starting a slon(1), and got the following “FATAL” messages in its logs. What’s up???

Slony-I 2.1.4 Documentation 146 / 263

2006-03-29 16:01:34 UTC CONFIG main: slon version 1.2.0 starting up
2006-03-29 16:01:34 UTC DEBUG2 slon: watchdog process started
2006-03-29 16:01:34 UTC DEBUG2 slon: watchdog ready - pid = 28326
2006-03-29 16:01:34 UTC DEBUG2 slon: worker process created - pid = 28327
2006-03-29 16:01:34 UTC CONFIG main: local node id = 1
2006-03-29 16:01:34 UTC DEBUG2 main: main process started
2006-03-29 16:01:34 UTC CONFIG main: launching sched_start_mainloop
2006-03-29 16:01:34 UTC CONFIG main: loading current cluster configuration
2006-03-29 16:01:34 UTC CONFIG storeSet: set_id=1 set_origin=1 set_comment=’test set’
2006-03-29 16:01:34 UTC DEBUG2 sched_wakeup_node(): no_id=1 (0 threads + worker ←↩

signaled)
2006-03-29 16:01:34 UTC DEBUG2 main: last local event sequence = 7
2006-03-29 16:01:34 UTC CONFIG main: configuration complete - starting threads
2006-03-29 16:01:34 UTC DEBUG1 localListenThread: thread starts
2006-03-29 16:01:34 UTC FATAL localListenThread: "select "_test1538".cleanupNodelock() ←↩

; insert into "_test1538".sl_nodelock values (1, 0, "pg_catalog".pg_backend_pid ←↩
()); " - ERROR: duplicate key violates unique constraint "sl_nodelock-pkey"

2006-03-29 16:01:34 UTC FATAL Do you already have a slon running against this node?
2006-03-29 16:01:34 UTC FATAL Or perhaps a residual idle backend connection from a ←↩

dead slon?

The table sl_nodelock is used as an “interlock” to prevent two slon(1) processes from trying to manage the same node
at the same time. The slon(1) tries inserting a record into the table; it can only succeed if it is the only node manager.

This error message is typically a sign that you have started up a second slon(1) process for a given node. The slon(1) asks
the obvious question: “Do you already have a slon running against this node?”

Supposing you experience some sort of network outage, the connection between slon(1) and database may fail, and the
slon(1) may figure this out long before the PostgreSQL instance it was connected to does. The result is that there will be
some number of idle connections left on the database server, which won’t be closed out until TCP/IP timeouts complete,
which seems to normally take about two hours. For that two hour period, the slon(1) will try to connect, over and over,
and will get the above fatal message, over and over. An administrator may clean this out by logging onto the server and
issuing kill -2 to any of the offending connections. Unfortunately, since the problem took place within the networking
layer, neither PostgreSQL nor Slony-I have a direct way of detecting this. You can mostly avoid this by making sure that
slon(1) processes always run somewhere nearby the server that each one manages. If the slon(1) runs on the same server
as the database it manages, any “networking failure” that could interrupt local connections would be likely to be serious
enough to threaten the entire server.

9. When can I shut down slon(1) processes?

Generally, it’s no big deal to shut down a slon(1) process. Each one is “merely” a PostgreSQL client, managing one node,
which spawns threads to manage receiving events from other nodes. The “event listening” threads are no big deal; they are
doing nothing fancier than periodically checking remote nodes to see if they have work to be done on this node. If you kill
off the slon(1) these threads will be closed, which should have little or no impact on much of anything. Events generated
while the slon(1) is down will be picked up when it is restarted. The “node managing” thread is a bit more interesting;
most of the time, you can expect, on a subscriber, for this thread to be processing SYNC events. If you shut off the slon(1)
during an event, the transaction will fail, and be rolled back, so that when the slon(1) restarts, it will have to go back and
reprocess the event. The only situation where this will cause particular “heartburn” is if the event being processed was
one which takes a long time to process, such as COPY_SET for a large replication set. The other thing that might cause
trouble is if the slon(1) runs fairly distant from nodes that it connects to; you could discover that database connections are
left idle in transaction. This would normally only occur if the network connection is destroyed without either slon(1) or
database being made aware of it. In that case, you may discover that “zombied” connections are left around for as long
as two hours if you don’t go in by hand and kill off the PostgreSQL backends. There is one other case that could cause
trouble; when the slon(1) managing the origin node is not running, no SYNC events run against that node. If the slon(1)
stays down for an extended period of time, and something like Section 6.1.11 isn’t running, you could be left with one big
SYNC to process when it comes back up. But that is only a concern if that slon(1) is down for an extended period of time;
shutting it down for a few seconds shouldn’t cause any great problem.

10. Are there risks to doing so? How about benefits?

Slony-I 2.1.4 Documentation 147 / 263

In short, if you don’t have something like an 18 hour COPY_SET under way, it’s normally not at all a big deal to take a
slon(1) down for a little while, or perhaps even cycle all the slon(1) processes.

11. I was trying to subscribe a set involving a multiple GB table, and it failed.

Jul 31 22:52:53 dbms TICKER[70295]: [153-1] CONFIG remoteWorkerThread_3: copy table " ←↩
public"."images"

Jul 31 22:52:53 dbms TICKER[70295]: [154-1] CONFIG remoteWorkerThread_3: Begin COPY of ←↩
table "public"."images"

Jul 31 22:54:24 dbms TICKER[70295]: [155-1] ERROR remoteWorkerThread_3: PGgetCopyData ←↩
() server closed the connection unexpectedly

Jul 31 22:54:24 dbms TICKER[70295]: [155-2] This probably means the server ←↩
terminated abnormally

Jul 31 22:54:24 dbms TICKER[70295]: [155-3] before or while processing the request.
Jul 31 22:54:24 dbms TICKER[70295]: [156-1] WARN remoteWorkerThread_3: data copy for ←↩

set 1 failed 1 times - sleep 15 seconds

Oh, by the way, I’m using SSL-based PostgreSQL conenctions.

A further examination of PostgreSQL logs indicated errors of the form:

Jul 31 23:00:00 tickerforum postgres[27093]: [9593-2] STATEMENT: copy "public"."images ←↩
"

("post_ordinal","ordinal","caption","image","login","file_type","thumb","thumb_width"," ←↩
thumb_height","hidden") to stdout;

Jul 31 23:00:00 tickerforum postgres[27093]: [9594-1] LOG: SSL error: internal error
Jul 31 23:00:00 tickerforum postgres[27093]: [9594-2] STATEMENT: copy "public"."images ←↩

" ("post_ordinal","ordinal","caption","image","login","file_type","thumb"," ←↩
thumb_width","thumb_height","hidden") to stdout;

Jul 31 23:00:01 tickerforum postgres[27093]: [9595-1] LOG: SSL error: internal error

This demonstrates a problem with PostgreSQL handling of SSL connections, which is “out of scope” for Slony-I proper
(e.g. - there’s no “there” inside Slony-I for us to try to fix). The resolution to the underlying problem will presumably be
handled upstream in the PostgreSQL project; the workaround is to, at least for the initial SUBSCRIBE SET event, switch
to a non-SSL PostgreSQL connection.

Slony-I FAQ: Configuration Issues

1. Slonik fails - cannot load PostgreSQL library - PGRES_FATAL_ERROR load ’$libdir/xxid’; When I run the sample setup
script I get an error message similar to: stdin:64: PGRES_FATAL_ERROR load ’$libdir/xxid’; - ERROR: LOAD: could
not open file ’$libdir/xxid’: No such file or directory
Evidently, you haven’t got the xxid.so library in the $libdir directory that the PostgreSQL instance is using. Note
that the Slony-I components need to be installed in the PostgreSQL software installation for each and every one of the
nodes, not just on the origin node.This may also point to there being some other mismatch between the PostgreSQL binary
instance and the Slony-I instance. If you compiled Slony-I yourself, on a machine that may have multiple PostgreSQL
builds “lying around,” it’s possible that the slon or slonik binaries are asking to load something that isn’t actually in the
library directory for the PostgreSQL database cluster that it’s hitting.Long and short: This points to a need to “audit” what
installations of PostgreSQL and Slony-I you have in place on the machine(s). Unfortunately, just about any mismatch will
cause things not to link up quite right. ... Life is simplest if you only have one set of PostgreSQL binaries on a given server;
in that case, there isn’t a “wrong place” in which Slony-I components might get installed. If you have several software
installs, you’ll have to verify that the right versions of Slony-I components are associated with the right PostgreSQL
binaries.

2. I tried creating a CLUSTER NAME with a "-" in it. That didn’t work.

Slony-I uses the same rules for unquoted identifiers as the PostgreSQL main parser, so no, you probably shouldn’t put a
"-" in your identifier name. You may be able to defeat this by putting “quotes” around identifier names, but it’s still liable
to bite you some, so this is something that is probably not worth working around.

3. ps finds passwords on command line If I run a ps command, I, and everyone else, can see passwords on the command line.

Take the passwords out of the Slony configuration, and put them into $(HOME)/.pgpass.

Slony-I 2.1.4 Documentation 148 / 263

4. Table indexes with FQ namespace names

set add table (set id = 1, origin = 1, id = 27,
full qualified name = ’nspace.some_table’,
key = ’key_on_whatever’,
comment = ’Table some_table in namespace nspace with a candidate primary ←↩

key’);

If you have key = ’nspace.key_on_whatever’ the request will FAIL.

5. Replication has fallen behind, and it appears that the queries to draw data from sl_log_1/sl_log_2 are taking a long time
to pull just a few SYNCs.

Until version 1.1.1, there was only one index on sl_log_1/sl_log_2, and if there were multiple replication sets, some of
the columns on the index would not provide meaningful selectivity. If there is no index on column log_xid, consider
adding it. See slony1_base.sql for an example of how to create the index.

6. I need to rename a column that is in the primary key for one of my replicated tables. That seems pretty dangerous, doesn’t
it? I have to drop the table out of replication and recreate it, right?

Actually, this is a scenario which works out remarkably cleanly. Slony-I does indeed make intense use of the primary key
columns, but actually does so in a manner that allows this sort of change to be made very nearly transparently. Suppose
you revise a column name, as with the SQL DDL alter table accounts alter column aid rename to cid; This revises the
names of the columns in the table; it simultaneously renames the names of the columns in the primary key index. The result
is that the normal course of things is that altering a column name affects both aspects simultaneously on a given node. The
ideal and proper handling of this change would involve using SLONIK EXECUTE SCRIPT(7) to deploy the alteration,
which ensures it is applied at exactly the right point in the transaction stream on each node. Interestingly, that isn’t forcibly
necessary. As long as the alteration is applied on the replication set’s origin before application on subscribers, things won’t
break irrepairably. Some SYNC events that do not include changes to the altered table can make it through without any
difficulty... At the point that the first update to the table is drawn in by a subscriber, that is the point at which SYNC events
will start to fail, as the provider will indicate the “new” set of columns whilst the subscriber still has the “old” ones. If you
then apply the alteration to the subscriber, it can retry the SYNC, at which point it will, finding the “new” column names,
work just fine.

7. I have a PostgreSQL 7.2-based system that I really, really want to use Slony-I to help me upgrade it to 8.0. What is involved
in getting Slony-I to work for that?

Rod Taylor has reported the following... This is approximately what you need to do:

• Take the 7.3 templates and copy them to 7.2 -- or otherwise hardcode the version your using to pick up the 7.3 templates

• Remove all traces of schemas from the code and sql templates. I basically changed the "." to an "_".

• Bunch of work related to the XID datatype and functions. For example, Slony creates CASTs for the xid to xxid and
back -- but 7.2 cannot create new casts that way so you need to edit system tables by hand. I recall creating an Operator
Class and editing several functions as well.

• sl_log_1 will have severe performance problems with any kind of data volume. This required a number of index and
query changes to optimize for 7.2. 7.3 and above are quite a bit smarter in terms of optimizations they can apply.

• Don’t bother trying to make sequences work. Do them by hand after the upgrade using pg_dump and grep.

Of course, now that you have done all of the above, it’s not compatible with standard Slony now. So you either need
to implement 7.2 in a less hackish way, or you can also hack up slony to work without schemas on newer versions of
PostgreSQL so they can talk to each other. Almost immediately after getting the DB upgraded from 7.2 to 7.4, we
deinstalled the hacked up Slony (by hand for the most part), and started a migration from 7.4 to 7.4 on a different machine
using the regular Slony. This was primarily to ensure we didn’t keep our system catalogues which had been manually
fiddled with. All that said, we upgraded a few hundred GB from 7.2 to 7.4 with about 30 minutes actual downtime (versus
48 hours for a dump / restore cycle) and no data loss.

That represents a sufficiently ugly set of “hackery” that the developers are exceedingly reluctant to let it anywhere near to
the production code. If someone were interested in “productionizing” this, it would probably make sense to do so based on
the Slony-I 1.0 branch, with the express plan of not trying to keep much in the way of forwards compatibility or long term
maintainability of replicas. You should only head down this road if you are sufficiently comfortable with PostgreSQL and
Slony-I that you are prepared to hack pretty heavily with the code.

Slony-I 2.1.4 Documentation 149 / 263

8. I had a network “glitch” that led to my using SLONIK FAILOVER(7) to fail over to an alternate node. The failure wasn’t
a disk problem that would corrupt databases; why do I need to rebuild the failed node from scratch?

The action of SLONIK FAILOVER(7) is to abandon the failed node so that no more Slony-I activity goes to or from that
node. As soon as that takes place, the failed node will progressively fall further and further out of sync.

The big problem with trying to recover the failed node is that it may contain updates that never made it out of the origin.
If they get retried, on the new origin, you may find that you have conflicting updates. In any case, you do have a sort of
“logical” corruption of the data even if there never was a disk failure making it “physical.”

As discusssed in Section 3.4, using SLONIK FAILOVER(7) should be considered a last resort as it implies that you are
abandoning the origin node as being corrupted.

9. After notification of a subscription on another node, replication falls over on one of the subscribers, with the following
error message:

ERROR remoteWorkerThread_1: "begin transaction; set transaction isolation level ←↩
serializable; lock table "_livesystem".sl_config_lock; select "_livesystem". ←↩
enableSubscription(25506, 1, 501); notify "_livesystem_Event"; notify " ←↩
_livesystem_Confirm"; insert into "_livesystem".sl_event (ev_origin, ev_seqno, ←↩
ev_timestamp, ev_minxid, ev_maxxid, ev_xip, ev_type , ev_data1, ev_data2, ←↩
ev_data3, ev_data4) values (’1’, ’4896546’, ’2005-01-23 16:08:55.037395’, ←↩
’1745281261’, ’1745281262’, ’’, ’ENABLE_SUBSCRIPTION’, ’25506’, ’1’, ’501’, ’t’); ←↩
insert into "_livesystem".sl_confirm (con_origin, con_received, con_seqno, ←↩
con_timestamp) values (1, 4, ’4896546’, CURRENT_TIMESTAMP); commit transaction;" ←↩
PGRES_FATAL_ERROR ERROR: insert or update on table "sl_subscribe" violates ←↩

foreign key constraint "sl_subscribe-sl_path-ref"
DETAIL: Key (sub_provider,sub_receiver)=(1,501) is not present in table "sl_path".

This is then followed by a series of failed syncs as the slon(1) shuts down:

DEBUG2 remoteListenThread_1: queue event 1,4897517 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897518 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897519 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897520 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897521 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897522 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897523 SYNC

If you see a slon(1) shutting down with ignore new events due to shutdown log entries, you typically need to step back in
the log to before they started failing to see indication of the root cause of the problem.

In this particular case, the problem was that some of the SLONIK STORE PATH(7) commands had not yet made it to node
4 before the SLONIK SUBSCRIBE SET(7) command propagated. This demonstrates yet another example of the need to
not do things in a rush; you need to be sure things are working right before making further configuration changes.

10. I just used SLONIK MOVE SET(7) to move the origin to a new node. Unfortunately, some subscribers are still pointing to
the former origin node, so I can’t take it out of service for maintenance without stopping them from getting updates. What
do I do?

You need to use SLONIK SUBSCRIBE SET(7) to alter the subscriptions for those nodes to have them subscribe to a
provider that will be sticking around during the maintenance.

Warning
What you don’t do is to SLONIK UNSUBSCRIBE SET(7); that would require reloading all data for the nodes from
scratch later.

11. After notification of a subscription on another node, replication falls over, starting with the following error message:

Slony-I 2.1.4 Documentation 150 / 263

ERROR remoteWorkerThread_1: "begin transaction; set transaction isolation level ←↩
serializable; lock table "_livesystem".sl_config_lock; select "_livesystem". ←↩
enableSubscription(25506, 1, 501); notify "_livesystem_Event"; notify " ←↩
_livesystem_Confirm"; insert into "_livesystem".sl_event (ev_origin, ev_seqno, ←↩
ev_timestamp, ev_minxid, ev_maxxid, ev_xip, ev_type , ev_data1, ev_data2, ←↩
ev_data3, ev_data4) values (’1’, ’4896546’, ’2005-01-23 16:08:55.037395’, ←↩
’1745281261’, ’1745281262’, ’’, ’ENABLE_SUBSCRIPTION’, ’25506’, ’1’, ’501’, ’t’); ←↩
insert into "_livesystem".sl_confirm (con_origin, con_received, con_seqno, ←↩
con_timestamp) values (1, 4, ’4896546’, CURRENT_TIMESTAMP); commit transaction;" ←↩
PGRES_FATAL_ERROR ERROR: insert or update on table "sl_subscribe" violates ←↩

foreign key constraint "sl_subscribe-sl_path-ref"
DETAIL: Key (sub_provider,sub_receiver)=(1,501) is not present in table "sl_path".

This is then followed by a series of failed syncs as the slon(1) shuts down:

DEBUG2 remoteListenThread_1: queue event 1,4897517 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897518 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897519 SYNC
DEBUG2 remoteListenThread_1: queue event 1,4897520 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897521 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897522 SYNC
DEBUG2 remoteWorker_event: ignore new events due to shutdown
DEBUG2 remoteListenThread_1: queue event 1,4897523 SYNC

If you see a slon(1) shutting down with ignore new events due to shutdown log entries, you’ll typically have to step back
to before they started failing to see indication of the root cause of the problem.

In this particular case, the problem was that some of the SLONIK STORE PATH(7) commands had not yet made it to node
4 before the SLONIK SUBSCRIBE SET(7) command propagated. This is yet another example of the need to not do things
too terribly quickly; you need to be sure things are working right before making further configuration changes.

12. Is the ordering of tables in a set significant?

Most of the time, it isn’t. You might imagine it of some value to order the tables in some particular way in order that
“parent” entries would make it in before their “children” in some foreign key relationship; that isn’t the case since foreign
key constraint triggers are turned off on subscriber nodes.

(Jan Wieck comments:) The order of table ID’s is only significant during a SLONIK LOCK SET(7) in preparation of
switchover. If that order is different from the order in which an application is acquiring its locks, it can lead to deadlocks
that abort either the application or slon.

(David Parker) I ran into one other case where the ordering of tables in the set was significant: in the presence of inherited
tables. If a child table appears before its parent in a set, then the initial subscription will end up deleting that child table
after it has possibly already received data, because the copy_set logic does a delete, not a delete only, so the delete of the
parent will delete the new rows in the child as well.

13. If you have a slonik(1) script something like this, it will hang on you and never complete, because you can’t have wait for
event inside a try block. A try block is executed as one transaction, and the event that you are waiting for can never arrive
inside the scope of the transaction.

try {
echo ’Moving set 1 to node 3’;
lock set (id=1, origin=1);
echo ’Set locked’;
wait for event (origin = 1, confirmed = 3);
echo ’Moving set’;
move set (id=1, old origin=1, new origin=3);
echo ’Set moved - waiting for event to be confirmed by node 3’;
wait for event (origin = 1, confirmed = 3);
echo ’Confirmed’;

} on error {

Slony-I 2.1.4 Documentation 151 / 263

echo ’Could not move set for cluster foo’;
unlock set (id=1, origin=1);
exit -1;

}

You must not invoke SLONIK WAIT FOR EVENT(7) inside a “try” block.

14. Slony-I: cannot add table to currently subscribed set 1 I tried to add a table to a set, and got the following message:

Slony-I: cannot add table to currently subscribed set 1

You cannot add tables to sets that already have subscribers.The workaround to this is to create ANOTHER set, add the new
tables to that new set, subscribe the same nodes subscribing to "set 1" to the new set, and then merge the sets together.

15. ERROR: duplicate key violates unique constraint "sl_table-pkey"I tried setting up a second replication set, and got the
following error:

stdin:9: Could not create subscription set 2 for oxrslive!
stdin:11: PGRES_FATAL_ERROR select "_oxrslive".setAddTable(2, 1, ’public.replic_test’, ←↩

’replic_test__Slony-I_oxrslive_rowID_key’, ’Table public.replic_test without ←↩
primary key’); - ERROR: duplicate key violates unique constraint "sl_table-pkey"

CONTEXT: PL/pgSQL function "setaddtable_int" line 71 at SQL statement

The table IDs used in SLONIK SET ADD TABLE(7) are required to be unique ACROSS ALL SETS. Thus, you can’t restart
numbering at 1 for a second set; if you are numbering them consecutively, a subsequent set has to start with IDs after where
the previous set(s) left off.

16. One of my nodes fell over (slon(1) / postmaster was down) and nobody noticed for several days. Now, when the slon(1)
for that node starts up, it runs for about five minutes, then terminates, with the error message: ERROR: remoteListen-
Thread_%d: timeout for event selection What’s wrong, and what do I do?

The problem is that the listener thread (in src/slon/remote_listener.c) timed out when trying to determine what
events were outstanding for that node. By default, the query will run for five minutes; if there were many days worth of
outstanding events, this might take too long.

On versions of Slony-I before 1.1.7, 1.2.7, and 1.3, one answer would be to increase the timeout in src/slon/remote_
listener.c, recompile slon(1), and retry.

Another would be to treat the node as having failed, and use the slonik(1) command SLONIK DROP NODE(7) to drop the
node, and recreate it. If the database is heavily updated, it may well be cheaper to do this than it is to find a way to let it
catch up.

In newer versions of Slony-I, there is a new configuration parameter called slon_conf_remote_listen_timeout; you’d alter
the config file to increase the timeout, and try again. Of course, as mentioned above, it could be faster to drop the node and
recreate it than to let it catch up across a week’s worth of updates...

Slony-I FAQ: Performance Issues

1. Replication has been slowing down, I’m seeing FETCH 100 FROM LOG queries running for a long time, sl_log_1/sl_log_2
is growing, and performance is, well, generally getting steadily worse.

There are actually a number of possible causes for this sort of thing. There is a question involving similar pathology where
the problem is that pg_listener grows because it is not vacuumed. Another “ proximate cause ” for this growth is for there
to be a connection connected to the node that sits IDLE IN TRANSACTION for a very long time. That open transaction
will have multiple negative effects, all of which will adversely affect performance:

• Vacuums on all tables, including pg_listener, will not clear out dead tuples from before the start of the idle transac-
tion.

• The cleanup thread will be unable to clean out entries in sl_log_1, sl_log_2, and sl_seqlog, with the result that these
tables will grow, ceaselessly, until the transaction is closed.

Slony-I 2.1.4 Documentation 152 / 263

You can monitor for this condition inside the database only if the PostgreSQL postgresql.conf parameter stat
s_command_string is set to true. If that is set, then you may submit the query select * from pg_stat_activity where
current_query like ’%IDLE% in transaction’; which will find relevant activity.

You should also be able to search for “ idle in transaction ” in the process table to find processes that are thus holding on
to an ancient transaction.

It is also possible (though rarer) for the problem to be a transaction that is, for some other reason, being held open for a
very long time. The query_start time in pg_stat_activity may show you some query that has been running
way too long.

There are plans for PostgreSQL to have a timeout parameter, open_idle_transaction_timeout , which would
cause old transactions to time out after some period of disuse. Buggy connection pool logic is a common culprit for this
sort of thing. There are plans for pgpool to provide a better alternative, eventually, where connections would be shared
inside a connection pool implemented in C. You may have some more or less buggy connection pool in your Java or
PHP application; if a small set of real connections are held in pgpool, that will hide from the database the fact that the
application imagines that numerous of them are left idle in transaction for hours at a time.

2. After dropping a node, sl_log_1/sl_log_2 aren’t getting purged out anymore.

This is a common scenario in versions before 1.0.5, as the “clean up” that takes place when purging the node does not
include purging out old entries from the Slony-I table, sl_confirm, for the recently departed node. The node is no longer
around to update confirmations of what syncs have been applied on it, and therefore the cleanup thread that purges log
entries thinks that it can’t safely delete entries newer than the final sl_confirm entry, which rather curtails the ability to
purge out old logs.Diagnosis: Run the following query to see if there are any “phantom/obsolete/blocking” sl_confirm
entries:

oxrsbar=# select * from _oxrsbar.sl_confirm where con_origin not in (select no_id from ←↩
_oxrsbar.sl_node) or con_received not in (select no_id from _oxrsbar.sl_node);

con_origin | con_received | con_seqno | con_timestamp
------------+--------------+-----------+----------------------------

4 | 501 | 83999 | 2004-11-09 19:57:08.195969
1 | 2 | 3345790 | 2004-11-14 10:33:43.850265
2 | 501 | 102718 | 2004-11-14 10:33:47.702086

501 | 2 | 6577 | 2004-11-14 10:34:45.717003
4 | 5 | 83999 | 2004-11-14 21:11:11.111686
4 | 3 | 83999 | 2004-11-24 16:32:39.020194

(6 rows)

In version 1.0.5, the SLONIK DROP NODE(7) function purges out entries in sl_confirm for the departing node. In earlier
versions, this needs to be done manually. Supposing the node number is 3, then the query would be:

delete from _namespace.sl_confirm where con_origin = 3 or con_received = 3;

Alternatively, to go after “all phantoms,” you could use

oxrsbar=# delete from _oxrsbar.sl_confirm where con_origin not in (select no_id from ←↩
_oxrsbar.sl_node) or con_received not in (select no_id from _oxrsbar.sl_node);

DELETE 6

General “due diligence” dictates starting with a BEGIN, looking at the contents of sl_confirm before, ensuring that only
the expected records are purged, and then, only after that, confirming the change with a COMMIT. If you delete confirm
entries for the wrong node, that could ruin your whole day.You’ll need to run this on each node that remains...Note that as
of 1.0.5, this is no longer an issue at all, as it purges unneeded entries from sl_confirm in two places:

• At the time a node is dropped

• At the start of each cleanupEvent run, which is the event in which old data is purged from sl_log_1, sl_log_2, and
sl_seqlog

3. The slon spent the weekend out of commission [for some reason], and it’s taking a long time to get a sync through.

You might want to take a look at the tables sl_log_1 and sl_log_2 and do a summary to see if there are any really enormous
Slony-I transactions in there. Up until at least 1.0.2, there needs to be a slon(1) connected to the origin in order for SYNC
events to be generated.

Slony-I 2.1.4 Documentation 153 / 263

Note
As of 1.0.2, function generate_sync_event() provides an alternative as backup...

If none are being generated, then all of the updates until the next one is generated will collect into one rather enormous
Slony-I transaction.Conclusion: Even if there is not going to be a subscriber around, you really want to have a slon running
to service the origin node.Slony-I 1.1 provides a stored procedure that allows SYNC counts to be updated on the origin
based on a cron job even if there is no slon(1) daemon running.

4. Some nodes start consistently falling behindI have been running Slony-I on a node for a while, and am seeing system
performance suffering.I’m seeing long running queries of the form:

fetch 100 from LOG;

This can be characteristic of pg_listener (which is the table containing NOTIFY data) having plenty of dead tuples
in it. That makes NOTIFY events take a long time, and causes the affected node to gradually fall further and further
behind.You quite likely need to do a VACUUM FULL on pg_listener, to vigorously clean it out, and need to vacuum
pg_listener really frequently. Once every five minutes would likely be AOK. Slon daemons already vacuum a bunch
of tables, and cleanup_thread.c contains a list of tables that are frequently vacuumed automatically. In Slony-I 1.0.2,
pg_listener is not included. In 1.0.5 and later, it is regularly vacuumed, so this should cease to be a direct issue. In
version 1.2, pg_listener will only be used when a node is only receiving events periodically, which means that the
issue should mostly go away even in the presence of evil long running transactions...There is, however, still a scenario
where this will still “bite.” Under MVCC, vacuums cannot delete tuples that were made “obsolete” at any time after the
start time of the eldest transaction that is still open. Long running transactions will cause trouble, and should be avoided,
even on subscriber nodes.

5. I have submitted a SLONIK MOVE SET(7) / SLONIK EXECUTE SCRIPT(7) request, and it seems to be stuck on one of
my nodes. Slony-I logs aren’t displaying any errors or warnings

Is it possible that you are running pg_autovacuum, and it has taken out locks on some tables in the replication set? That
would somewhat-invisibly block Slony-I from performing operations that require locking acquisition of exclusive locks.
You might check for these sorts of locks using the following query: select l.*, c.relname from pg_locks l, pg_class c
where c.oid = l.relation ; A ShareUpdateExclusiveLock lock will block the Slony-I operations that need their
own exclusive locks, which are likely queued up, marked as not being granted.

6. I’m noticing in the logs that a slon(1) is frequently switching in and out of “polling” mode as it is frequently reporting
“LISTEN - switch from polling mode to use LISTEN” and “UNLISTEN - switch into polling mode”.

The thresholds for switching between these modes are controlled by the configuration parameters slon_conf_sync_interval
and slon_conf_sync_interval_timeout; if the timeout value (which defaults to 10000, implying 10s) is kept low, that makes
it easy for the slon(1) to decide to return to “listening” mode. You may want to increase the value of the timeout parameter.

Slony-I FAQ: Slony-I Bugs in Elder Versions

1. The slon(1) processes servicing my subscribers are growing to enormous size, challenging system resources both in terms
of swap space as well as moving towards breaking past the 2GB maximum process size on my system. By the way, the data
that I am replicating includes some rather large records. We have records that are tens of megabytes in size. Perhaps that
is somehow relevant?

Yes, those very large records are at the root of the problem. The problem is that slon(1) normally draws in about 100
records at a time when a subscriber is processing the query which loads data from the provider. Thus, if the average record
size is 10MB, this will draw in 1000MB of data which is then transformed into INSERT or UPDATE statements, in the
slon(1) process’ memory. That obviously leads to slon(1) growing to a fairly tremendous size. The number of records that
are fetched is controlled by the value SLON_DATA_FETCH_SIZE , which is defined in the file src/slon/slon.h.
The relevant extract of this is shown below.

#ifdef SLON_CHECK_CMDTUPLES
#define SLON_COMMANDS_PER_LINE 1
#define SLON_DATA_FETCH_SIZE 100
#define SLON_WORKLINES_PER_HELPER (SLON_DATA_FETCH_SIZE * 4)

Slony-I 2.1.4 Documentation 154 / 263

#else
#define SLON_COMMANDS_PER_LINE 10
#define SLON_DATA_FETCH_SIZE 10
#define SLON_WORKLINES_PER_HELPER (SLON_DATA_FETCH_SIZE * 50)
#endif

If you are experiencing this problem, you might modify the definition of SLON_DATA_FETCH_SIZE , perhaps reduc-
ing by a factor of 10, and recompile slon(1). There are two definitions as SLON_CHECK_CMDTUPLES allows doing
some extra monitoring to ensure that subscribers have not fallen out of SYNC with the provider. By default, this option is
turned off, so the default modification to make is to change the second definition of SLON_DATA_FETCH_SIZE from
10 to 1.

In version 1.2, configuration values sync_max_rowsize and sync_max_largemem are associated with a new algorithm that
changes the logic as follows. Rather than fetching 100 rows worth of data at a time:

• The fetch from LOG query will draw in 500 rows at a time where the size of the attributes does not exceed sync_max_rowsize.
With default values, this restricts this aspect of memory consumption to about 8MB.

• Tuples with larger attributes are loaded until aggregate size exceeds the parameter sync_max_largemem. By default, this
restricts consumption of this sort to about 5MB. This value is not a strict upper bound; if you have a tuple with attributes
50MB in size, it forcibly must be loaded into memory. There is no way around that. But slon(1) at least won’t be trying
to load in 100 such records at a time, chewing up 10GB of memory by the time it’s done.

This should alleviate problems people have been experiencing when they sporadically have series’ of very large tuples.

2. I am trying to replicate UNICODE data from PostgreSQL 8.0 to PostgreSQL 8.1, and am experiencing problems.

PostgreSQL 8.1 is quite a lot more strict about what UTF-8 mappings of Unicode characters it accepts as compared to
version 8.0. If you intend to use Slony-I to update an older database to 8.1, and might have invalid UTF-8 values, you
may be for an unpleasant surprise. Let us suppose we have a database running 8.0, encoding in UTF-8. That database
will accept the sequence ’\060\242’ as UTF-8 compliant, even though it is really not. If you replicate into a PostgreSQL
8.1 instance, it will complain about this, either at subscribe time, where Slony-I will complain about detecting an invalid
Unicode sequence during the COPY of the data, which will prevent the subscription from proceeding, or, upon adding
data, later, where this will hang up replication fairly much irretrievably. (You could hack on the contents of sl_log_1, but
that quickly gets really unattractive...)There have been discussions as to what might be done about this. No compelling
strategy has yet emerged, as all are unattractive. If you are using Unicode with PostgreSQL 8.0, you run a considerable risk
of corrupting data. If you use replication for a one-time conversion, there is a risk of failure due to the issues mentioned
earlier; if that happens, it appears likely that the best answer is to fix the data on the 8.0 system, and retry. In view of
the risks, running replication between versions seems to be something you should not keep running any longer than is
necessary to migrate to 8.1. For more details, see the discussion on postgresql-hackers mailing list. .

3. I am running Slony-I 1.1 and have a 4+ node setup where there are two subscription sets, 1 and 2, that do not share any
nodes. I am discovering that confirmations for set 1 never get to the nodes subscribing to set 2, and that confirmations for
set 2 never get to nodes subscribing to set 1. As a result, sl_log_1/sl_log_2 grow and grow, and are never purged. This
was reported as Slony-I bug 1485 .

Apparently the code for RebuildListenEntries() does not suffice for this case. RebuildListenEntrie
s() will be replaced in Slony-I version 1.2 with an algorithm that covers this case. In the interim, you’ll want to manually
add some sl_listen entries using SLONIK STORE LISTEN(7) or storeListen(), based on the (apparently not as
obsolete as we thought) principles described in Section 4.2.

4. I am finding some multibyte columns (Unicode, Big5) are being truncated a bit, clipping off the last character. Why?

This was a bug present until a little after Slony-I version 1.1.0; the way in which columns were being captured by the
logtrigger() function could clip off the last byte of a column represented in a multibyte format. Check to see that
your version of src/backend/slony1_funcs.c is 1.34 or better; the patch was introduced in CVS version 1.34 of
that file.

5. Bug #1226 indicates an error condition that can come up if you have a replication set that consists solely of sequences.

The short answer is that having a replication set consisting only of sequences is not a best practice.

The problem with a sequence-only set comes up only if you have a case where the only subscriptions that are active for a
particular subscriber to a particular provider are for “sequence-only” sets. If a node gets into that state, replication will fail,

http://archives.postgresql.org/pgsql-hackers/2005-12/msg00181.php
http://gborg.postgresql.org/project/slony1/bugs/bugupdate.php?1485
http://gborg.postgresql.org/project/slony1/bugs/bugupdate.php?1226

Slony-I 2.1.4 Documentation 155 / 263

as the query that looks for data from sl_log_1/sl_log_2 has no tables to find, and the query will be malformed, and fail. If a
replication set with tables is added back to the mix, everything will work out fine; it just seems scary. This problem should
be resolved some time after Slony-I 1.1.0.

6. I need to drop a table from a replication set

This can be accomplished several ways, not all equally desirable ;-).

• You could drop the whole replication set, and recreate it with just the tables that you need. Alas, that means recopying a
whole lot of data, and kills the usability of the cluster on the rest of the set while that’s happening.

• If you are running 1.0.5 or later, there is the command SET DROP TABLE, which will "do the trick."

• If you are still using 1.0.1 or 1.0.2, the essential functionality of SLONIK SET DROP TABLE(7) involves the functionality
in droptable_int(). You can fiddle this by hand by finding the table ID for the table you want to get rid of, which
you can find in sl_table, and then run the following three queries, on each host:

select _slonyschema.alterTableRestore(40);
select _slonyschema.tableDropKey(40);
delete from _slonyschema.sl_table where tab_id = 40;

The schema will obviously depend on how you defined the Slony-I cluster. The table ID, in this case, 40, will need to
change to the ID of the table you want to have go away.
You’ll have to run these three queries on all of the nodes, preferably firstly on the origin node, so that the dropping of this
propagates properly. Implementing this via a slonik(1) statement with a new Slony-I event would do that. Submitting the
three queries using SLONIK EXECUTE SCRIPT(7) could do that. Also possible would be to connect to each database
and submit the queries by hand.

7. I need to drop a sequence from a replication set

If you are running 1.0.5 or later, there is a SLONIK SET DROP SEQUENCE(7) command in Slonik to allow you to do this,
parallelling SLONIK SET DROP TABLE(7).If you are running 1.0.2 or earlier, the process is a bit more manual.Supposing
I want to get rid of the two sequences listed below, whois_cachemgmt_seq and epp_whoi_cach_seq_, we start
by needing the seq_id values.

oxrsorg=# select * from _oxrsorg.sl_sequence where seq_id in (93,59);
seq_id | seq_reloid | seq_set | seq_comment
--------+------------+---------+-------------------------------------

93 | 107451516 | 1 | Sequence public.whois_cachemgmt_seq
59 | 107451860 | 1 | Sequence public.epp_whoi_cach_seq_

(2 rows)

The data that needs to be deleted to stop Slony from continuing to replicate these are thus:

delete from _oxrsorg.sl_seqlog where seql_seqid in (93, 59);
delete from _oxrsorg.sl_sequence where seq_id in (93,59);

Those two queries could be submitted to all of the nodes via schemadocddlscript_complete(p_only_on_node integer,
p_script text, p_set_id integer) / SLONIK EXECUTE SCRIPT(7), thus eliminating the sequence everywhere “at once.”
Or they may be applied by hand to each of the nodes.Similarly to SLONIK SET DROP TABLE(7), this is implemented
Slony-I version 1.0.5 as SLONIK SET DROP SEQUENCE(7).

8. I set up my cluster using pgAdminIII, with cluster name “MY-CLUSTER”. Time has passed, and I tried using Slonik to
make a configuration change, and this is failing with the following error message:

ERROR: syntax error at or near -

The problem here is that Slony-I expects cluster names to be valid SQL Identifiers, and slonik(1) enforces this. Unfortu-
nately, pgAdminIII did not do so, and allowed using a cluster name that now causes a problem.

If you have gotten into this spot, it’s a problem that we mayn’t be help resolve, terribly much. It’s conceivably possible that
running the SQL command alter namespace "_My-Bad-Clustername" rename to "_BetterClusterName"; against
each database may work. That shouldn’t particularly damage things! On the other hand, when the problem has been
experienced, users have found they needed to drop replication and rebuild the cluster.

http://www.postgresql.org/docs/8.3/static/sql-syntax-lexical.html

Slony-I 2.1.4 Documentation 156 / 263

A change in version 2.0.2 is that a function runs as part of loading functions into the database which checks the validity of
the cluster name. If you try to use an invalid cluster name, loading the functions will fail, with a suitable error message,
which should prevent things from going wrong even if you’re using tools other than slonik(1) to manage setting up the
cluster.

Slony-I FAQ: Hopefully Obsolete Issues

1. slon(1) does not restart after crash After an immediate stop of PostgreSQL (simulation of system crash) in pg_listener
a tuple with relname=’_${cluster_name}_Restart’ exists. slon doesn’t start because it thinks another process is serving
the cluster on this node. What can I do? The tuples can’t be dropped from this relation. The logs claim that

Another slon daemon is serving this node already

The problem is that the system table pg_listener, used by PostgreSQL to manage event notifications, contains some
entries that are pointing to backends that no longer exist. The new slon(1) instance connects to the database, and is
convinced, by the presence of these entries, that an old slon is still servicing this Slony-I node. The “trash” in that table
needs to be thrown away.It’s handy to keep a slonik script similar to the following to run in such cases:

twcsds004[/opt/twcsds004/OXRS/slony-scripts]$ cat restart_org.slonik
cluster name = oxrsorg ;
node 1 admin conninfo = ’host=32.85.68.220 dbname=oxrsorg user=postgres port=5532’;
node 2 admin conninfo = ’host=32.85.68.216 dbname=oxrsorg user=postgres port=5532’;
node 3 admin conninfo = ’host=32.85.68.244 dbname=oxrsorg user=postgres port=5532’;
node 4 admin conninfo = ’host=10.28.103.132 dbname=oxrsorg user=postgres port=5532’;
restart node 1;
restart node 2;
restart node 3;
restart node 4;

SLONIK RESTART NODE(7) cleans up dead notifications so that you can restart the node.As of version 1.0.5, the startup
process of slon looks for this condition, and automatically cleans it up. As of version 8.1 of PostgreSQL, the functions that
manipulate pg_listener do not support this usage, so for Slony-I versions after 1.1.2 (e.g. - 1.1.5), this “interlock”
behaviour is handled via a new table, and the issue should be transparently “gone.”

2. I tried the following query which did not work:

sdb=# explain select query_start, current_query from pg_locks join
pg_stat_activity on pid = procpid where granted = true and transaction
in (select transaction from pg_locks where granted = false);

ERROR: could not find hash function for hash operator 716373

It appears the Slony-I xxid functions are claiming to be capable of hashing, but cannot actually do so. What’s up?

Slony-I defined an XXID data type and operators on that type in order to allow manipulation of transaction IDs that are
used to group together updates that are associated with the same transaction. Operators were not available for PostgreSQL
7.3 and earlier versions; in order to support version 7.3, custom functions had to be added. The = operator was marked as
supporting hashing, but for that to work properly, the join operator must appear in a hash index operator class. That was
not defined, and as a result, queries (like the one above) that decide to use hash joins will fail.

This has not been considered a “release-critical” bug, as Slony-I does not internally generate queries likely to use hash
joins. This problem shouldn’t injure Slony-I’s ability to continue replicating.

Future releases of Slony-I (e.g. 1.0.6, 1.1) will omit the HASHES indicator, so that

Supposing you wish to repair an existing instance, so that your own queries will not run afoul of this problem, you may do
so as follows:

/* cbbrowne@[local]/dba2 slony_test1=*/ \x
Expanded display is on.
/* cbbrowne@[local]/dba2 slony_test1=*/ select * from pg_operator where oprname = ’=’
and oprnamespace = (select oid from pg_namespace where nspname = ’public’);
-[RECORD 1]+-------------

Slony-I 2.1.4 Documentation 157 / 263

oprname | =
oprnamespace | 2200
oprowner | 1
oprkind | b
oprcanhash | t
oprleft | 82122344
oprright | 82122344
oprresult | 16
oprcom | 82122365
oprnegate | 82122363
oprlsortop | 82122362
oprrsortop | 82122362
oprltcmpop | 82122362
oprgtcmpop | 82122360
oprcode | "_T1".xxideq
oprrest | eqsel
oprjoin | eqjoinsel

/* cbbrowne@[local]/dba2 slony_test1=*/ update pg_operator set oprcanhash = ’f’ where
oprname = ’=’ and oprnamespace = 2200 ;
UPDATE 1

3. I can do a pg_dump and load the data back in much faster than the SUBSCRIBE SET runs. Why is that?

Slony-I depends on there being an already existant index on the primary key, and leaves all indexes alone whilst using
the PostgreSQL COPY command to load the data. Further hurting performance, the COPY SET event (an event that the
subscription process generates) starts by deleting the contents of tables, which leaves the table full of dead tuples. When
you use pg_dump to dump the contents of a database, and then load that, creation of indexes is deferred until the very end.
It is much more efficient to create indexes against the entire table, at the end, than it is to build up the index incrementally
as each row is added to the table.

If you can drop unnecessary indices while the COPY takes place, that will improve performance quite a bit. If you can
TRUNCATE tables that contain data that is about to be eliminated, that will improve performance a lot.

Slony-I version 1.1.5 and later versions should handle this automatically; it “thumps” on the indexes in the PostgreSQL
catalog to hide them, in much the same way triggers are hidden, and then “fixes” the index pointers and reindexes the table.

4. Replication Fails - Unique Constraint ViolationReplication has been running for a while, successfully, when a node en-
counters a “glitch,” and replication logs are filled with repetitions of the following:

DEBUG2 remoteWorkerThread_1: syncing set 2 with 5 table(s) from provider 1
DEBUG2 remoteWorkerThread_1: syncing set 1 with 41 table(s) from provider 1
DEBUG2 remoteWorkerThread_1: syncing set 5 with 1 table(s) from provider 1
DEBUG2 remoteWorkerThread_1: syncing set 3 with 1 table(s) from provider 1
DEBUG2 remoteHelperThread_1_1: 0.135 seconds delay for first row
DEBUG2 remoteHelperThread_1_1: 0.343 seconds until close cursor
ERROR remoteWorkerThread_1: "insert into "_oxrsapp".sl_log_1 (log_origin, ←↩

log_xid, log_tableid, log_actionseq, log_cmdtype, log_cmddata) ←↩
values (’1’, ’919151224’, ’34’, ’35090538’, ’D’, ’_rserv_ts=’’9275244’’’);

delete from only public.epp_domain_host where _rserv_ts=’9275244’;insert into "_oxrsapp ←↩
".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, log_cmdtype, ←↩
log_cmddata) values (’1’, ’919151224’, ’34’, ’35090539’, ’D’, ’_rserv_ts ←↩
=’’9275245’’’);

delete from only public.epp_domain_host where _rserv_ts=’9275245’;insert into "_oxrsapp ←↩
".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, log_cmdtype, ←↩
log_cmddata) values (’1’, ’919151224’, ’26’, ’35090540’, ’D’, ’_rserv_ts ←↩
=’’24240590’’’);

delete from only public.epp_domain_contact where _rserv_ts=’24240590’;insert into " ←↩
_oxrsapp".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, ←↩
log_cmdtype, log_cmddata) values (’1’, ’919151224’, ’26’, ’35090541’, ’D’, ’ ←↩
_rserv_ts=’’24240591’’’);

delete from only public.epp_domain_contact where _rserv_ts=’24240591’;insert into " ←↩
_oxrsapp".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, ←↩

Slony-I 2.1.4 Documentation 158 / 263

log_cmdtype, log_cmddata) values (’1’, ’919151224’, ’26’, ’35090542’, ’D’, ’ ←↩
_rserv_ts=’’24240589’’’);

delete from only public.epp_domain_contact where _rserv_ts=’24240589’;insert into " ←↩
_oxrsapp".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, ←↩
log_cmdtype, log_cmddata) values (’1’, ’919151224’, ’11’, ’35090543’, ’D’, ’ ←↩
_rserv_ts=’’36968002’’’);

delete from only public.epp_domain_status where _rserv_ts=’36968002’;insert into " ←↩
_oxrsapp".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, ←↩
log_cmdtype, log_cmddata) values (’1’, ’919151224’, ’11’, ’35090544’, ’D’, ’ ←↩
_rserv_ts=’’36968003’’’);

delete from only public.epp_domain_status where _rserv_ts=’36968003’;insert into " ←↩
_oxrsapp".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, ←↩
log_cmdtype, log_cmddata) values (’1’, ’919151224’, ’24’, ’35090549’, ’I’, ’(←↩
contact_id,status,reason,_rserv_ts) values (’’6972897’’,’’64’’,’’’’,’’31044208’’)’) ←↩
;

insert into public.contact_status (contact_id,status,reason,_rserv_ts) values ←↩
(’6972897’,’64’,’’,’31044208’);insert into "_oxrsapp".sl_log_1 (log_origin, ←↩
log_xid, log_tableid, log_actionseq, log_cmdtype, log_cmddata) values (’1’, ←↩
’919151224’, ’24’, ’35090550’, ’D’, ’_rserv_ts=’’18139332’’’);

delete from only public.contact_status where _rserv_ts=’18139332’;insert into "_oxrsapp ←↩
".sl_log_1 (log_origin, log_xid, log_tableid, log_actionseq, log_cmdtype, ←↩
log_cmddata) values (’1’, ’919151224’, ’24’, ’35090551’, ’D’, ’_rserv_ts ←↩
=’’18139333’’’);

delete from only public.contact_status where _rserv_ts=’18139333’;" ERROR: duplicate ←↩
key violates unique constraint "contact_status_pkey"

- qualification was:
ERROR remoteWorkerThread_1: SYNC aborted

The transaction rolls back, and Slony-I tries again, and again, and again. The problem is with one of the last SQL
statements, the one with log_cmdtype = ’I’. That isn’t quite obvious; what takes place is that Slony-I groups 10 update
queries together to diminish the number of network round trips.

A certain cause for this has been difficult to arrive at.By the time we notice that there is a problem, the seemingly missed
delete transaction has been cleaned out of sl_log_1, so there appears to be no recovery possible. What has seemed nec-
essary, at this point, is to drop the replication set (or even the node), and restart replication from scratch on that node.In
Slony-I 1.0.5, the handling of purges of sl_log_1 became more conservative, refusing to purge entries that haven’t been
successfully synced for at least 10 minutes on all nodes. It was not certain that that would prevent the “glitch” from taking
place, but it seemed plausible that it might leave enough sl_log_1 data to be able to do something about recovering from
the condition or at least diagnosing it more exactly. And perhaps the problem was that sl_log_1 was being purged too
aggressively, and this would resolve the issue completely. It is a shame to have to reconstruct a large replication node for
this; if you discover that this problem recurs, it may be an idea to break replication down into multiple sets in order to
diminish the work involved in restarting replication. If only one set has broken, you may only need to unsubscribe/drop
and resubscribe the one set. In one case we found two lines in the SQL error message in the log file that contained identical
insertions into sl_log_1. This ought to be impossible as is a primary key on sl_log_1. The latest (somewhat) punctured
theory that comes from that was that perhaps this PK index has been corrupted (representing a PostgreSQL bug), and that
perhaps the problem might be alleviated by running the query:

reindex table _slonyschema.sl_log_1;

On at least one occasion, this has resolved the problem, so it is worth trying this.

This problem has been found to represent a PostgreSQL bug as opposed to one in Slony-I. Version 7.4.8 was released with
two resolutions to race conditions that should resolve the issue. Thus, if you are running a version of PostgreSQL earlier
than 7.4.8, you should consider upgrading to resolve this.

5. I started doing a backup using pg_dump, and suddenly Slony stops

Ouch. What happens here is a conflict between:

• pg_dump, which has taken out an AccessShareLock on all of the tables in the database, including the Slony-I ones, and

• A Slony-I sync event, which wants to grab a AccessExclusiveLock on the table sl_event.

Slony-I 2.1.4 Documentation 159 / 263

The initial query that will be blocked is thus:

select "_slonyschema".createEvent(’_slonyschema, ’SYNC’, NULL);

(You can see this in pg_stat_activity, if you have query display turned on in postgresql.conf)The actual
query combination that is causing the lock is from the function Slony_I_ClusterStatus(), found in slony1_
funcs.c, and is localized in the code that does:

LOCK TABLE %s.sl_event;
INSERT INTO %s.sl_event (...stuff...)
SELECT currval(’%s.sl_event_seq’);

The LOCK statement will sit there and wait until pg_dump (or whatever else has pretty much any kind of access lock
on sl_event) completes.Every subsequent query submitted that touches sl_event will block behind the createEvent
call.There are a number of possible answers to this:

• Have pg_dump specify the schema dumped using --schema=whatever, and don’t try dumping the cluster’s schema.

• It would be nice to add an --exclude-schema option to pg_dump to exclude the Slony-I cluster schema. Maybe in
8.2...

• Note that 1.0.5 uses a more precise lock that is less exclusive that alleviates this problem.

1. I was trying to request SLONIK EXECUTE SCRIPT(7) or SLONIK MOVE SET(7), and found messages as follows on one
of the subscribers:

NOTICE: Slony-I: multiple instances of trigger defrazzle on table frobozz
NOTICE: Slony-I: multiple instances of trigger derez on table tron
ERROR: Slony-I: Unable to disable triggers

The trouble would seem to be that you have added triggers on tables whose names conflict with triggers that were hidden
by Slony-I. Slony-I hides triggers (save for those “unhidden” via SLONIK STORE TRIGGER(7)) by repointing them to
the primary key of the table. In the case of foreign key triggers, or other triggers used to do data validation, it should
be quite unnecessary to run them on a subscriber, as equivalent triggers should have been invoked on the origin node. In
contrast, triggers that do some form of “cache invalidation” are ones you might want to have run on a subscriber. The Right
Way to handle such triggers is normally to use SLONIK STORE TRIGGER(7), which tells Slony-I that a trigger should
not get deactivated.

But some intrepid DBA might take matters into their own hands and install a trigger by hand on a subscriber, and the
above condition generally has that as the cause. What to do? What to do? The answer is normally fairly simple: Drop
out the “extra” trigger on the subscriber before the event that tries to restore them runs. Ideally, if the DBA is particularly
intrepid, and aware of this issue, that should take place before there is ever a chance for the error message to appear. If the
DBA is not that intrepid, the answer is to connect to the offending node and drop the “visible” version of the trigger using
the SQL DROP TRIGGER command. That should allow the event to proceed. If the event was SLONIK EXECUTE
SCRIPT(7), then the “not-so-intrepid” DBA may need to add the trigger back, by hand, or, if they are wise, they should
consider activating it using SLONIK STORE TRIGGER(7).

2. Behaviour - all the subscriber nodes start to fall behind the origin, and all the logs on the subscriber nodes have the
following error message repeating in them (when I encountered it, there was a nice long SQL statement above each entry):

ERROR remoteWorkerThread_1: helper 1 finished with error
ERROR remoteWorkerThread_1: SYNC aborted

Cause: you have likely issued alter table statements directly on the databases instead of using the slonik SLONIK EXE-
CUTE SCRIPT(7) command.The solution is to rebuild the trigger on the affected table and fix the entries in sl_log_1/sl_log_2
by hand.

• You’ll need to identify from either the slon logs, or the PostgreSQL database logs exactly which statement it is that is
causing the error.

• You need to fix the Slony-defined triggers on the table in question. This is done with the following procedure.

Slony-I 2.1.4 Documentation 160 / 263

BEGIN;
LOCK TABLE table_name;
SELECT _oxrsorg.altertablerestore(tab_id);--tab_id is _slony_schema.sl_table.tab_id
SELECT _oxrsorg.altertableforreplication(tab_id);--tab_id is _slony_schema.sl_table. ←↩

tab_id
COMMIT;

You then need to find the rows in sl_log_1/sl_log_2 that have bad entries and fix them. You may want to take down the
slon daemons for all nodes except the master; that way, if you make a mistake, it won’t immediately propagate through
to the subscribers.
Here is an example:

BEGIN;

LOCK TABLE customer_account;

SELECT _app1.altertablerestore(31);
SELECT _app1.altertableforreplication(31);
COMMIT;

BEGIN;
LOCK TABLE txn_log;

SELECT _app1.altertablerestore(41);
SELECT _app1.altertableforreplication(41);

COMMIT;

--fixing customer_account, which had an attempt to insert a "" into a timestamp with ←↩
timezone.

BEGIN;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’60684.00’’ where pkey=’’49’’’ ←↩
where log_actionseq = ’67796036’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’60690.00’’ where pkey=’’49’’’ ←↩
where log_actionseq = ’67796194’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’60684.00’’ where pkey=’’49’’’ ←↩
where log_actionseq = ’67795881’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’1852.00’’ where pkey=’’57’’’ where ←↩
log_actionseq = ’67796403’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’87906.00’’ where pkey=’’8’’’ where ←↩
log_actionseq = ’68352967’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’125180.00’’ where pkey=’’60’’’ ←↩
where log_actionseq = ’68386951’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’125198.00’’ where pkey=’’60’’’ ←↩
where log_actionseq = ’68387055’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’125174.00’’ where pkey=’’60’’’ ←↩
where log_actionseq = ’68386682’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’125186.00’’ where pkey=’’60’’’ ←↩
where log_actionseq = ’68386992’;

update _app1.sl_log_1 SET log_cmddata = ’balance=’’125192.00’’ where pkey=’’60’’’ ←↩
where log_actionseq = ’68387029’;

3. Node #1 was dropped via SLONIK DROP NODE(7), and the slon(1) one of the other nodes is repeatedly failing with the
error message:

ERROR remoteWorkerThread_3: "begin transaction; set transaction isolation level
serializable; lock table "_mailermailer".sl_config_lock; select "_mailermailer"
.storeListen_int(2, 1, 3); notify "_mailermailer_Event"; notify "_mailermailer_C
onfirm"; insert into "_mailermailer".sl_event (ev_origin, ev_seqno, ev_times
tamp, ev_minxid, ev_maxxid, ev_xip, ev_type , ev_data1, ev_data2, ev_data3

Slony-I 2.1.4 Documentation 161 / 263

) values (’3’, ’2215’, ’2005-02-18 10:30:42.529048’, ’3286814’, ’3286815’, ’’
, ’STORE_LISTEN’, ’2’, ’1’, ’3’); insert into "_mailermailer".sl_confirm
(con_origin, con_received, con_seqno, con_timestamp) values (3, 2, ’2215’, CU
RRENT_TIMESTAMP); commit transaction;" PGRES_FATAL_ERROR ERROR: insert or updat
e on table "sl_listen" violates foreign key constraint "sl_listen-sl_path-ref"
DETAIL: Key (li_provider,li_receiver)=(1,3) is not present in table "sl_path".
DEBUG1 syncThread: thread done

Evidently, a SLONIK STORE LISTEN(7) request hadn’t propagated yet before node 1 was dropped.

This points to a case where you’ll need to do “event surgery” on one or more of the nodes. A STORE_LISTEN event
remains outstanding that wants to add a listen path that cannot be created because node 1 and all paths pointing to node 1
have gone away. Let’s assume, for exposition purposes, that the remaining nodes are #2 and #3, and that the above error
is being reported on node #3. That implies that the event is stored on node #2, as it wouldn’t be on node #3 if it had not
already been processed successfully. The easiest way to cope with this situation is to delete the offending sl_event entry
on node #2. You’ll connect to node #2’s database, and search for the STORE_LISTEN event: select * from sl_event
where ev_type = ’STORE_LISTEN’; There may be several entries, only some of which need to be purged.

-# begin; -- Don’t straight delete them; open a transaction so you can respond to OOPS
BEGIN;
-# delete from sl_event where ev_type = ’STORE_LISTEN’ and
-# (ev_data1 = ’1’ or ev_data2 = ’1’ or ev_data3 = ’1’);
DELETE 3
-# -- Seems OK...
-# commit;
COMMIT

The next time the slon for node 3 starts up, it will no longer find the “offensive” STORE_LISTEN events, and replication
can continue. (You may then run into some other problem where an old stored event is referring to no-longer-existant
configuration...)

4. I have a database where we have been encountering the following error message in our application:

permission denied for sequence sl_action_seq

When we traced it back, it was due to the application calling lastval() to capture the most recent sequence update,
which happened to catch the last update to a Slony-I internal sequence.

Slony-I uses sequences to provide primary key values for log entries, and therefore this kind of behaviour may (perhaps
regrettably!) be expected. Calling lastval(), to “anonymously” get “the most recently updated sequence value”, rather
than using currval(’sequence_name’) is an unsafe thing to do in general, as anything you might add in that uses
DBMS features for logging, archiving, or replication can throw in an extra sequence update that you weren’t expecting.
In general, use of lastval() doesn’t seem terribly safe; using it when Slony-I (or any similar trigger-based replication
system such as Londiste or Bucardo) can lead to capturing unexpected sequence updates.

12.2 Release Checklist

Here are things that should be done whenever a release is prepared:

• Positive build reports for each supported platform - although it is arguably less necessary for a comprehensive list if we are
releasing a minor upgrade

• Some kind of Standard Test Plan

• If the release modified the set of version-specific SQL files in src/backend (e.g. - it added a new slony1_base.v83.
sql or slony1_funcs.v83.sql), or if we have other changes to the shape of PostgreSQL version support, the function
load_slony_functions() in src/slonik/slonik.c needs to be revised to reflect the new shape of things.

Slony-I 2.1.4 Documentation 162 / 263

• The new release needs to be added to function upgradeSchema(text) in src/backend/slony1_funcs.sql.

This takes place in a “cross-branch” fashion; if we add version 1.1.9, in the 1.1 branch, then version 1.1.9 needs to be added to
the 1.2 branch as well as to later branches (e.g. - 1.3, 1.4, HEAD). Earlier branches will normally not need to be made aware
of versions added to later branches.

This was not true for version 2 - version 2.0 was different enough from earlier versions that we rejected having a direct upgrade
from 1.x to 2.0, so there are no versions in 1.x branches in upgradeSchema(text) for Slony-I version 2.0.

• Binary RPM packages

• If the release is a “.0” one, we need to open a new STABLE branch

git checkout HEAD
git checkout -b REL_3_0_STABLE

• Tag with the release ID. For version 1.1.2, this would be REL_1_1_2

git tag -a REL_1_1_2

• Check out an exported copy via: git archive REL_1_1_2 -o /tmp/slony1-engine-1.0.2.tar

• Run autoconf so as to regenerate configure from configure.ac

• Purge directory autom4te.cache so it is not included in the build

Does not need to be done by hand - the later make distclean step does this for you.

• Run tools/release_checklist.sh

This does a bunch of consistency checks to make sure that various files that are supposed to contain version numbers contain
consistent values.

• For instance, configure should contain, for release 1.1.2:

• PACKAGE_VERSION=REL_1_1_2

• PACKAGE_STRING=slony1 REL_1_1_2

• config.h.in needs to contain the version number in two forms; the definitions for SLONY_I_VERSION_STRING and
SLONY_I_VERSION_STRING_DEC both need to be updated.

• src/backend/slony1_funcs.sql has major/minor/patch versions in functions slonyVersionMajor(), slonyV
ersionMinor(), and slonyVersionPatchlevel(). These need to be assigned “by hand” at this point.

• It sure would be nice if more of these could be assigned automatically, somehow.

Don’t commit the new configure; we shouldn’t be tracking this in Git.

• make sure that the generated files from .l and .y are created, for example slony/conf-file.[ch]

Currently this is best done by issuing ./configure && make all && make clean but that is a somewhat ugly approach.

Slightly better may be ./configure && make src/slon/conf-file.c src/slonik/parser.c src/slonik/scan.c

• Make sure that generated Makefiles and such from the previous step(s) are removed.

make distclean will do that...

Note that make distclean also clears out autom4te.cache, thus obsoleting some former steps that suggested that it was
needful to delete them.

• Generate HTML tarball, and RTF/PDF, if possible... Note that the HTML version should include *.html (duh!), *.jpg,
*.png, and *.css

Note that, if starting from a “clean” copy of the documentation, in order to properly build the HTML tarball, it is necessary to
run make html twice, in order for the document index to be properly constructed.

– The first time make html is run, the file HTML.index does not yet exist.
When jade is run, against the document, a side-effect is to generate HTML.index, extracting all index tags from the Slony-I
documentation.

Slony-I 2.1.4 Documentation 163 / 263

– The second time make html is run, HTML.index is transformed into bookindex.sgml, which jade may then use to
generate a nice index page indicating all the index entries included in the documentation tree.

• Run make clean in doc/adminguide before generating the tarball in order that bookindex.sgml is NOT part of the
tarball

• Alternatively, delete doc/adminguide/bookindex.sgml

• Rename the directory (e.g. - slony1-engine) to a name based on the release, e.g. - slony1-1.1.2

• Generate a tarball - tar tfvj slony1-1.1.2.tar.bz2 slony1-1.1.2

• Build the administrative documentation, and build a tarball as slony1-1.1.2-html.tar.bz2

Make sure that the docs are inside a subdir in the tarball.

• Put these tarballs in a temporary area, and notify everyone that they should test them out ASAP based on the Standard Test
Plan.

12.3 Using Slonik

It’s a bit of a pain writing Slonik scripts by hand, particularly as you start working with Slony-I clusters that may be comprised
of increasing numbers of nodes and sets. Some problems that have been noticed include the following:

• If you are using Slony-I as a “master/slave” replication system with one “master” node and one “slave” node, it may be
sufficiently mnemonic to call the “master” node 1 and the “slave” node 2.

Unfortunately, as the number of nodes increases, the mapping of IDs to nodes becomes way less obvious, particularly if you
have a cluster where the origin might shift from node to node over time.

• Similarly, if there is only one replication set, it’s fine for that to be “set 1,” but if there are a multiplicity of sets, the numbering
involved in using set numbers may grow decreasingly intuitive.

• People have observed that Slonik does not provide any notion of iteration. It is common to want to create a set of similar
SLONIK STORE PATH(7) entries, since, in most cases, hosts will likely access a particular server via the same host name or
IP address.

• Users seem interested in wrapping everything possible in TRY blocks, which is regrettably somewhat less useful than might
be hoped...

These have assortedly pointed to requests for such enhancements as:

• Named nodes, named sets

This is supported in Slony-I 1.1 by the SLONIK DEFINE(7) and SLONIK INCLUDE(7) statements.

The use of SLONIK INCLUDE(7) to allow creating “preamble files” has proven an invaluable tool to reduce errors. The
preamble file is set up once, verified once, and then that verified script may be used with confidence for each slonik script.

• Looping and control constructs

It seems to make little sense to create a fullscale parser as Yet Another Little Language grows into a rather larger one. There
are plenty of scripting languages out there that can be used to construct Slonik scripts; it is unattractive to force yet another one
on people.

There are several ways to work around these issues that have been seen “in the wild”:

• Embedding generation of slonik inside shell scripts

The test bed found in the src/ducttape directory takes this approach.

• The altperl tools use Perl code to generate Slonik scripts.

You define the cluster’s configuration as a set of Perl objects; each script walks through the Perl objects as needed to generate
a slonik script for that script’s purpose.

Slony-I 2.1.4 Documentation 164 / 263

12.4 Embedding Slonik in Shell Scripts

As mentioned earlier, there are numerous Slony-I test scripts in src/ducttape that embed the generation of Slonik inside the
shell script.

They mostly don’t do this in a terribly sophisticated way. Typically, they use the following sort of structure:

DB1=slony_test1
DB2=slony_test2
slonik <<_EOF_

cluster name = T1;
node 1 admin conninfo = ’dbname=$DB1’;
node 2 admin conninfo = ’dbname=$DB2’;

try {
create set (id = 1, origin = 1, comment =

’Set 1 - pgbench tables’);
set add table (set id = 1, origin = 1,

id = 1, fully qualified name = ’public.accounts’,
comment = ’Table accounts’);

set add table (set id = 1, origin = 1,
id = 2, fully qualified name = ’public.branches’,
comment = ’Table branches’);

set add table (set id = 1, origin = 1,
id = 3, fully qualified name = ’public.tellers’,
comment = ’Table tellers’);

set add table (set id = 1, origin = 1,
id = 4, fully qualified name = ’public.history’,
comment = ’Table accounts’);

}
on error {
exit 1;

}
EOF

A more sophisticated approach might involve defining some common components, notably the “preamble” that consists of the
SLONIK CLUSTER NAME(7) SLONIK ADMIN CONNINFO(7) commands that are common to every Slonik script, thus:

CLUSTER=T1
DB1=slony_test1
DB2=slony_test2
PREAMBLE="cluster name = $CLUSTER
node 1 admin conninfo = ’dbname=$DB1’;
node 2 admin conninfo = ’dbname=$DB2’;
"

The PREAMBLE value could then be reused over and over again if the shell script invokes slonik multiple times. You might also
consider using SLONIK INCLUDE(7) and place the preamble in a file that is included.

Shell variables provide a simple way to assign names to sets and nodes:

origin=1
subscriber=2
mainset=1
slonik <<_EOF_
$PREAMBLE
try {

create set (id = $mainset, origin = $origin,
comment = ’Set $mainset - pgbench tables’);

set add table (set id = $mainset, origin = $origin,
id = 1, fully qualified name = ’public.accounts’,
comment = ’Table accounts’);

Slony-I 2.1.4 Documentation 165 / 263

set add table (set id = $mainset, origin = $origin,
id = 2, fully qualified name = ’public.branches’,
comment = ’Table branches’);

set add table (set id = $mainset, origin = $origin,
id = 3, fully qualified name = ’public.tellers’,
comment = ’Table tellers’);

set add table (set id = $mainset, origin = $origin,
id = 4, fully qualified name = ’public.history’,
comment = ’Table accounts’);

} on error {
exit 1;

}
EOF

The script might be further enhanced to loop through the list of tables as follows:

Basic configuration
origin=1
subscriber=2
mainset=1
List of tables to replicate
TABLES="accounts branches tellers history"
ADDTABLES=""
tnum=1
for table in ‘echo $TABLES‘; do

ADDTABLES="$ADDTABLES
set add table ($set id = $mainset, origin = $origin,
id = $tnum, fully qualified name = ’public.$table’,
comment = ’Table $tname’);

"
let "tnum=tnum+1"

done
slonik <<_EOF_
$PREAMBLE
try {

create set (id = $mainset, origin = $origin,
comment = ’Set $mainset - pgbench tables’);

$ADDTABLES
} on error {

exit 1;
}
EOF

That is of somewhat dubious value if you only have 4 tables, but eliminating errors resulting from enumerating large lists of
configuration by hand will make this pretty valuable for the larger examples you’ll find in “real life.”

You can do even more sophisticated things than this if your scripting language supports things like:

• “Record” data structures that allow assigning things in parallel

• Functions, procedures, or subroutines, allowing you to implement useful functionality once, and then refer to it multiple times
within a script

• Some sort of “module import” system so that common functionality can be shared across many scripts

If you can depend on having Bash, zsh, or Korn shell available, well, those are all shells with extensions supporting reasonably
sophisticated data structures and module systems. On Linux, Bash is fairly ubiquitous; on commercial UNIX™, Korn shell is
fairly ubiquitous; on BSD, “sophisticated” shells are an option rather than a default.

At that point, it makes sense to start looking at other scripting languages, of which Perl is the most ubiquitous, being widely
available on Linux, UNIX™, and BSD.

http://www.gnu.org/software/bash/bash.html
http://www.zsh.org/
http://www.kornshell.com/

Slony-I 2.1.4 Documentation 166 / 263

12.5 More Slony-I Help

If you are having problems with Slony-I, you have several options for help:

12.5.1 Slony-I Website

http://slony.info/ - the official “home” of Slony-I contains links to the documentation, mailing lists and source code.

12.5.2 Mailing Lists

The answer to your problem may exist in the Slony1-general mailing list archives, or you may choose to ask your question on
the Slony1-general mailing list. The mailing list archives, and instructions for joining the list may be found here. .

If you are a question to the mailing list then you should try to include the following information:

• The version of Slony-I you are using

• The version of PostgreSQL you are using

• A description of your replication cluster. This should include the number of replication sets, which node is the master for each
set.

• The text of any error messages you are receiving from slony

• If you received the error while running a slonik script then try to include the script

It is a good idea to run the Section 5.1.1 tool before posting a question to the mailing list. It may give some clues as to what is
wrong, and the results are likely to be of some assistance in analyzing the problem.

12.5.3 Other Sources

• There are several articles here Varlena GeneralBits that may be helpful but was written for an older version of Slony-I.

• IRC - There are usually some people on #slony on irc.freenode.net who may be able to answer some of your questions. Many
people leave themselves logged into IRC and only periodically check the channel. It might take a while before someone
answers your questions

• pgpool

pgpool is a connection pool server for PostgreSQL; it allows an application to connect to it as if it were a standard PostgreSQL
server. It caches connections, which reduces the overhead involved in establishing them. It supports a “scheduled switchover”
feature, which would allow dynamically switching over from one server to another. That would be very useful when doing a
SLONIK MOVE SET(7), as it would allow applications to be switched to point to the new origin without needing to update
their configuration.

• Slony1-ctl - Another set of administration scripts for slony

http://slony.info/
http://lists.slony.info/mailman/listinfo/slony1-general
http://www.varlena.com/varlena/GeneralBits/Tidbits/index.php#Replication
http://pgpool.projects.postgresql.org/
http://pgfoundry.org/projects/slony1-ctl/

Slony-I 2.1.4 Documentation 167 / 263

Chapter 13

Schema schemadoc

13.1 Table: sl_archive_counter

Table used to generate the log shipping archive number.

STRUCTURE OF SL_ARCHIVE_COUNTER

ac_num bigint

Counter of SYNC ID used in log shipping as the archive number

ac_timestamp timestamp with time zone

Time at which the archive log was generated on the subscriber

13.2 Table: sl_components

Table used to monitor what various slon/slonik components are doing

STRUCTURE OF SL_COMPONENTS

co_actor text PRIMARY KEY

which component am I?

co_pid integer NOT NULL

my process/thread PID on node where slon runs

co_node integer NOT NULL

which node am I servicing?

co_connection_pid integer NOT NULL

PID of database connection being used on database server

co_activity text

activity that I am up to

co_starttime timestamp with time zone NOT NULL

when did my activity begin? (timestamp reported as per slon process on server running slon)

co_event bigint

which event have I started processing?

co_eventtype text

what kind of event am I processing? (commonly n/a for event loop main threads)

Slony-I 2.1.4 Documentation 168 / 263

13.3 Table: sl_config_lock

This table exists solely to prevent overlapping execution of configuration change procedures and the resulting possible deadlocks.

STRUCTURE OF SL_CONFIG_LOCK

dummy integer

No data ever goes in this table so the contents never matter. Indeed, this column does not really need to exist.

13.4 Table: sl_confirm

Holds confirmation of replication events. After a period of time, Slony removes old confirmed events from both this table and
the sl_event table.

STRUCTURE OF SL_CONFIRM

con_origin integer

The ID # (from sl_node.no_id) of the source node for this event

con_received integer

con_seqno bigint

The ID # for the event

con_timestamp timestamp with time zone DEFAULT (timeofday())::timestamp with time zone

When this event was confirmed

INDEXES ON SL_CONFIRM

sl_confirm_idx1 con_origin, con_received, con_seqno

sl_confirm_idx2 con_received, con_seqno

13.5 Table: sl_event

Holds information about replication events. After a period of time, Slony removes old confirmed events from both this table and
the sl_confirm table.

STRUCTURE OF SL_EVENT

ev_origin integer PRIMARY KEY

The ID # (from sl_node.no_id) of the source node for this event

ev_seqno bigint PRIMARY KEY

The ID # for the event

ev_timestamp timestamp with time zone

When this event record was created

ev_snapshot txid_snapshot

TXID snapshot on provider node for this event

Slony-I 2.1.4 Documentation 169 / 263

ev_type text

The type of event this record is for. SYNC = Synchronise STORE_NODE = ENABLE_NODE = DROP_NODE =
STORE_PATH = DROP_PATH = STORE_LISTEN = DROP_LISTEN = STORE_SET = DROP_SET = MERGE_SET
= SET_ADD_TABLE = SET_ADD_SEQUENCE = STORE_TRIGGER = DROP_TRIGGER = MOVE_SET = AC-
CEPT_SET = SET_DROP_TABLE = SET_DROP_SEQUENCE = SET_MOVE_TABLE = SET_MOVE_SEQUENCE
= FAILOVER_SET = SUBSCRIBE_SET = ENABLE_SUBSCRIPTION = UNSUBSCRIBE_SET = DDL_SCRIPT =
ADJUST_SEQ = RESET_CONFIG =

ev_data1 text

Data field containing an argument needed to process the event

ev_data2 text

Data field containing an argument needed to process the event

ev_data3 text

Data field containing an argument needed to process the event

ev_data4 text

Data field containing an argument needed to process the event

ev_data5 text

Data field containing an argument needed to process the event

ev_data6 text

Data field containing an argument needed to process the event

ev_data7 text

Data field containing an argument needed to process the event

ev_data8 text

Data field containing an argument needed to process the event

13.6 Table: sl_event_lock

This table exists solely to prevent multiple connections from concurrently creating new events and perhaps getting them out of
order.

STRUCTURE OF SL_EVENT_LOCK

dummy integer

No data ever goes in this table so the contents never matter. Indeed, this column does not really need to exist.

13.7 Table: sl_listen

Indicates how nodes listen to events from other nodes in the Slony-I network.

STRUCTURE OF SL_LISTEN

li_origin integer PRIMARY KEY REFERENCES sl_node

The ID # (from sl_node.no_id) of the node this listener is operating on

li_provider integer PRIMARY KEY REFERENCES sl_path

The ID # (from sl_node.no_id) of the source node for this listening event

li_receiver integer PRIMARY KEY REFERENCES sl_path

The ID # (from sl_node.no_id) of the target node for this listening event

Slony-I 2.1.4 Documentation 170 / 263

13.8 Table: sl_log_1

Stores each change to be propagated to subscriber nodes

STRUCTURE OF SL_LOG_1

log_origin integer

Origin node from which the change came

log_txid bigint

Transaction ID on the origin node

log_tableid integer

The table ID (from sl_table.tab_id) that this log entry is to affect

log_actionseq bigint

log_cmdtype character(1)

Replication action to take. U = Update, I = Insert, D = DELETE

log_cmddata text

The data needed to perform the log action

INDEXES ON SL_LOG_1

sl_log_1_idx1 log_origin, log_txid, log_actionseq

13.9 Table: sl_log_2

Stores each change to be propagated to subscriber nodes

STRUCTURE OF SL_LOG_2

log_origin integer

Origin node from which the change came

log_txid bigint

Transaction ID on the origin node

log_tableid integer

The table ID (from sl_table.tab_id) that this log entry is to affect

log_actionseq bigint

log_cmdtype character(1)

Replication action to take. U = Update, I = Insert, D = DELETE

log_cmddata text

The data needed to perform the log action

INDEXES ON SL_LOG_2

sl_log_2_idx1 log_origin, log_txid, log_actionseq

Slony-I 2.1.4 Documentation 171 / 263

13.10 Table: sl_node

Holds the list of nodes associated with this namespace.

STRUCTURE OF SL_NODE

no_id integer PRIMARY KEY

The unique ID number for the node

no_active boolean

Is the node active in replication yet?

no_comment text

A human-oriented description of the node

TABLES REFERENCING SL_LISTEN VIA FOREIGN KEY CONSTRAINTS

• sl_listen

• sl_path

• sl_set

• sl_setsync

13.11 Table: sl_nodelock

Used to prevent multiple slon instances and to identify the backends to kill in terminateNodeConnections().

STRUCTURE OF SL_NODELOCK

nl_nodeid integer PRIMARY KEY

Clients node_id

nl_conncnt serial PRIMARY KEY

Clients connection number

nl_backendpid integer

PID of database backend owning this lock

13.12 Table: sl_path

Holds connection information for the paths between nodes, and the synchronisation delay

STRUCTURE OF SL_PATH

pa_server integer PRIMARY KEY REFERENCES sl_node

The Node ID # (from sl_node.no_id) of the data source

pa_client integer PRIMARY KEY REFERENCES sl_node

The Node ID # (from sl_node.no_id) of the data target

pa_conninfo text NOT NULL

The PostgreSQL connection string used to connect to the source node.

Slony-I 2.1.4 Documentation 172 / 263

pa_connretry integer

The synchronisation delay, in seconds

TABLES REFERENCING SL_LISTEN VIA FOREIGN KEY CONSTRAINTS

• sl_listen

• sl_subscribe

13.13 Table: sl_registry

Stores miscellaneous runtime data

STRUCTURE OF SL_REGISTRY

reg_key text PRIMARY KEY

Unique key of the runtime option

reg_int4 integer

Option value if type int4

reg_text text

Option value if type text

reg_timestamp timestamp with time zone

Option value if type timestamp

13.14 View: sl_seqlastvalue

STRUCTURE OF SL_SEQLASTVALUE

seq_id integer

seq_set integer

seq_reloid oid

seq_origin integer

seq_last_value bigint

Slony-I 2.1.4 Documentation 173 / 263

SELECT sq.seq_id
,

sq.seq_set
,

sq.seq_reloid
,

s.set_origin AS seq_origin
,

sequencelastvalue
(

(
(quote_ident

(
(pgn.nspname)::text

) || [apos].[apos]::text
) || quote_ident
(

(pgc.relname)::text
)

)
) AS seq_last_value

FROM sl_sequence sq
,

sl_set s
,

pg_class pgc
,

pg_namespace pgn

WHERE (
(

(s.set_id = sq.seq_set)
AND (pgc.oid = sq.seq_reloid)

)
AND (pgn.oid = pgc.relnamespace)

);

Figure 13.1: Definition of view sl_seqlastvalue

13.15 Table: sl_seqlog

Log of Sequence updates

STRUCTURE OF SL_SEQLOG

seql_seqid integer

Sequence ID

seql_origin integer

Publisher node at which the sequence originates

seql_ev_seqno bigint

Slony-I Event with which this sequence update is associated

seql_last_value bigint

Last value published for this sequence

Slony-I 2.1.4 Documentation 174 / 263

INDEXES ON SL_SEQLOG

sl_seqlog_idx seql_origin, seql_ev_seqno, seql_seqid

13.16 Table: sl_sequence

Similar to sl_table, each entry identifies a sequence being replicated.

STRUCTURE OF SL_SEQUENCE

seq_id integer PRIMARY KEY

An internally-used ID for Slony-I to use in its sequencing of updates

seq_reloid oid UNIQUE NOT NULL

The OID of the sequence object

seq_relname name NOT NULL

The name of the sequence in pg_catalog.pg_class.relname used to recover from a dump/restore cycle

seq_nspname name NOT NULL

The name of the schema in pg_catalog.pg_namespace.nspname used to recover from a dump/restore cycle

seq_set integer REFERENCES sl_set

Indicates which replication set the object is in

seq_comment text

A human-oriented comment

13.17 Table: sl_set

Holds definitions of replication sets.

STRUCTURE OF SL_SET

set_id integer PRIMARY KEY

A unique ID number for the set.

set_origin integer REFERENCES sl_node

The ID number of the source node for the replication set.

set_locked bigint

Transaction ID where the set was locked.

set_comment text

A human-oriented description of the set.

TABLES REFERENCING SL_SEQUENCE VIA FOREIGN KEY CONSTRAINTS

• sl_sequence

• sl_setsync

• sl_subscribe

• sl_table

Slony-I 2.1.4 Documentation 175 / 263

13.18 Table: sl_setsync

SYNC information

STRUCTURE OF SL_SETSYNC

ssy_setid integer PRIMARY KEY REFERENCES sl_set

ID number of the replication set

ssy_origin integer REFERENCES sl_node

ID number of the node

ssy_seqno bigint

Slony-I sequence number

ssy_snapshot txid_snapshot

TXID in provider system seen by the event

ssy_action_list text

action list used during the subscription process. At the time a subscriber copies over data from the origin, it sees all tables
in a state somewhere between two SYNC events. Therefore this list must contains all log_actionseqs that are visible at that
time, whose operations have therefore already been included in the data copied at the time the initial data copy is done.
Those actions may therefore be filtered out of the first SYNC done after subscribing.

13.19 Table: sl_subscribe

Holds a list of subscriptions on sets

STRUCTURE OF SL_SUBSCRIBE

sub_set integer PRIMARY KEY REFERENCES sl_set

ID # (from sl_set) of the set being subscribed to

sub_provider integer REFERENCES sl_path

ID# (from sl_node) of the node providing data

sub_receiver integer PRIMARY KEY REFERENCES sl_path

ID# (from sl_node) of the node receiving data from the provider

sub_forward boolean

Does this provider keep data in sl_log_1/sl_log_2 to allow it to be a provider for other nodes?

sub_active boolean

Has this subscription been activated? This is not set on the subscriber until AFTER the subscriber has received COPY data
from the provider

13.20 Table: sl_table

Holds information about the tables being replicated.

STRUCTURE OF SL_TABLE

tab_id integer PRIMARY KEY

Unique key for Slony-I to use to identify the table

Slony-I 2.1.4 Documentation 176 / 263

tab_reloid oid UNIQUE NOT NULL

The OID of the table in pg_catalog.pg_class.oid

tab_relname name NOT NULL

The name of the table in pg_catalog.pg_class.relname used to recover from a dump/restore cycle

tab_nspname name NOT NULL

The name of the schema in pg_catalog.pg_namespace.nspname used to recover from a dump/restore cycle

tab_set integer REFERENCES sl_set

ID of the replication set the table is in

tab_idxname name NOT NULL

The name of the primary index of the table

tab_altered boolean NOT NULL

Has the table been modified for replication?

tab_comment text

Human-oriented description of the table

13.21 add_empty_table_to_replication(p_comment integer, p_idxname integer, p_tabname
text, p_nspname text, p_tab_id text, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

Verify that a table is empty, and add it to replication. tab_idxname is optional - if NULL, then we use the primary key. Note that
this function is to be run within an EXECUTE SCRIPT script, so it runs at the right place in the transaction stream on all nodes.

declare

prec record;
v_origin int4;
v_isorigin boolean;
v_fqname text;
v_query text;
v_rows integer;
v_idxname text;

begin
-- Need to validate that the set exists; the set will tell us if this is the origin

select set_origin into v_origin from sl_set where set_id = p_set_id;
if not found then
raise exception ’add_empty_table_to_replication: set % not found!’, p_set_id;
end if;

-- Need to be aware of whether or not this node is origin for the set
v_isorigin := (v_origin = getLocalNodeId(’_schemadoc’));

v_fqname := ’"’ || p_nspname || ’"."’ || p_tabname || ’"’;
-- Take out a lock on the table

v_query := ’lock ’ || v_fqname || ’;’;
execute v_query;

if v_isorigin then
-- On the origin, verify that the table is empty, failing if it has any tuples

v_query := ’select 1 as tuple from ’ || v_fqname || ’ limit 1;’;

Slony-I 2.1.4 Documentation 177 / 263

execute v_query into prec;
GET DIAGNOSTICS v_rows = ROW_COUNT;

if v_rows = 0 then
raise notice ’add_empty_table_to_replication: table % empty on origin - OK’, v_fqname;

else
raise exception ’add_empty_table_to_replication: table % contained tuples on origin ←↩

node %’, v_fqname, v_origin;
end if;
else

-- On other nodes, TRUNCATE the table
v_query := ’truncate ’ || v_fqname || ’;’;

execute v_query;
end if;

-- If p_idxname is NULL, then look up the PK index, and RAISE EXCEPTION if one does not ←↩
exist
if p_idxname is NULL then

select c2.relname into prec from pg_catalog.pg_index i, pg_catalog.pg_class c1, ←↩
pg_catalog.pg_class c2, pg_catalog.pg_namespace n where i.indrelid = c1.oid and i. ←↩
indexrelid = c2.oid and c1.relname = p_tabname and i.indisprimary and n.nspname = ←↩
p_nspname and n.oid = c1.relnamespace;

if not found then
raise exception ’add_empty_table_to_replication: table % has no primary key and no ←↩

candidate specified!’, v_fqname;
else
v_idxname := prec.relname;

end if;
else

v_idxname := p_idxname;
end if;
return setAddTable_int(p_set_id, p_tab_id, v_fqname, v_idxname, p_comment);

end

13.22 add_missing_table_field(p_type text, p_field text, p_table text, p_namespace
text)

Function Properties
Language: PLPGSQL, Return Type: boolean

Add a column of a given type to a table if it is missing

DECLARE
v_row record;
v_query text;

BEGIN
select 1 into v_row from pg_namespace n, pg_class c, pg_attribute a

where slon_quote_brute(n.nspname) = p_namespace and
c.relnamespace = n.oid and
slon_quote_brute(c.relname) = p_table and
a.attrelid = c.oid and
slon_quote_brute(a.attname) = p_field;

if not found then
raise notice ’Upgrade table %.% - add field %’, p_namespace, p_table, p_field;
v_query := ’alter table ’ || p_namespace || ’.’ || p_table || ’ add column ’;
v_query := v_query || p_field || ’ ’ || p_type || ’;’;
execute v_query;
return ’t’;

else
return ’f’;

end if;

Slony-I 2.1.4 Documentation 178 / 263

END;

13.23 addpartiallogindices()

Function Properties
Language: PLPGSQL, Return Type: integer

Add partial indexes, if possible, to the unused sl_log_? table for all origin nodes, and drop any that are no longer needed. This
function presently gets run any time set origins are manipulated (FAILOVER, STORE SET, MOVE SET, DROP SET), as well
as each time the system switches between sl_log_1 and sl_log_2.

DECLARE
v_current_status int4;
v_log int4;
v_dummy record;
v_dummy2 record;
idef text;
v_count int4;

v_iname text;
v_ilen int4;
v_maxlen int4;

BEGIN
v_count := 0;
select last_value into v_current_status from sl_log_status;

-- If status is 2 or 3 --> in process of cleanup --> unsafe to create indices
if v_current_status in (2, 3) then
return 0;

end if;

if v_current_status = 0 then -- Which log should get indices?
v_log := 2;

else
v_log := 1;

end if;
-- PartInd_test_db_sl_log_2-node-1

-- Add missing indices...
for v_dummy in select distinct set_origin from sl_set loop

v_iname := ’PartInd_schemadoc_sl_log_’ || v_log::text || ’-node-’
|| v_dummy.set_origin::text;

-- raise notice ’Consider adding partial index % on sl_log_%’, v_iname, v_log;
-- raise notice ’schema: [_schemadoc] tablename:[sl_log_%]’, v_log;

select * into v_dummy2 from pg_catalog.pg_indexes where tablename = ’sl_log_’ ←↩
|| v_log::text and indexname = v_iname;

if not found then
-- raise notice ’index was not found - add it!’;

v_iname := ’PartInd_schemadoc_sl_log_’ || v_log::text || ’-node-’ || v_dummy. ←↩
set_origin::text;

v_ilen := pg_catalog.length(v_iname);
v_maxlen := pg_catalog.current_setting(’max_identifier_length’::text)::int4;

if v_ilen > v_maxlen then
raise exception ’Length of proposed index name [%] > max_identifier_length [%] - ←↩

cluster name probably too long’, v_ilen, v_maxlen;
end if;

idef := ’create index "’ || v_iname ||
’" on sl_log_’ || v_log::text || ’ USING btree(log_txid) where (←↩

log_origin = ’ || v_dummy.set_origin::text || ’);’;
execute idef;
v_count := v_count + 1;

Slony-I 2.1.4 Documentation 179 / 263

else
-- raise notice ’Index % already present - skipping’, v_iname;

end if;
end loop;

-- Remove unneeded indices...
for v_dummy in select indexname from pg_catalog.pg_indexes i where i.tablename = ’sl_log_ ←↩

’ || v_log::text and
i.indexname like (’PartInd_schemadoc_sl_log_’ || v_log::text || ’- ←↩

node-%’) and
not exists (select 1 from sl_set where

i.indexname = ’PartInd_schemadoc_sl_log_’ || v_log::text || ’-node-’ || set_origin ←↩
::text)

loop
-- raise notice ’Dropping obsolete index %d’, v_dummy.indexname;
idef := ’drop index "’ || v_dummy.indexname || ’";’;
execute idef;
v_count := v_count - 1;

end loop;
return v_count;

END

13.24 altertableaddtriggers(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

alterTableAddTriggers(tab_id) Adds the log and deny access triggers to a replicated table.

declare
v_no_id int4;
v_tab_row record;
v_tab_fqname text;
v_tab_attkind text;
v_n int4;
v_trec record;
v_tgbad boolean;

begin
-- ----
-- Grab the central configuration lock
-- ----
lock table sl_config_lock;

-- ----
-- Get our local node ID
-- ----
v_no_id := getLocalNodeId(’_schemadoc’);

-- ----
-- Get the sl_table row and the current origin of the table.
-- ----
select T.tab_reloid, T.tab_set, T.tab_idxname,

S.set_origin, PGX.indexrelid,
slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname
into v_tab_row
from sl_table T, sl_set S,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX, "pg_catalog".pg_class PGXC

where T.tab_id = p_tab_id

Slony-I 2.1.4 Documentation 180 / 263

and T.tab_set = S.set_id
and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid
and PGX.indrelid = T.tab_reloid
and PGX.indexrelid = PGXC.oid
and PGXC.relname = T.tab_idxname
for update;

if not found then
raise exception ’Slony-I: alterTableAddTriggers(): Table with id % not found’, p_tab_id ←↩

;
end if;
v_tab_fqname = v_tab_row.tab_fqname;

v_tab_attkind := determineAttKindUnique(v_tab_row.tab_fqname,
v_tab_row.tab_idxname);

execute ’lock table ’ || v_tab_fqname || ’ in access exclusive mode’;

-- ----
-- Create the log and the deny access triggers
-- ----
execute ’create trigger "_schemadoc_logtrigger"’ ||

’ after insert or update or delete on ’ ||
v_tab_fqname || ’ for each row execute procedure logTrigger (’ ||

pg_catalog.quote_literal(’_schemadoc’) || ’,’ ||
pg_catalog.quote_literal(p_tab_id::text) || ’,’ ||
pg_catalog.quote_literal(v_tab_attkind) || ’);’;

execute ’create trigger "_schemadoc_denyaccess" ’ ||
’before insert or update or delete on ’ ||
v_tab_fqname || ’ for each row execute procedure ’ ||
’denyAccess (’ || pg_catalog.quote_literal(’_schemadoc’) || ’);’;

perform alterTableAddTruncateTrigger(v_tab_fqname, p_tab_id);

perform alterTableConfigureTriggers (p_tab_id);
return p_tab_id;

end;

13.25 altertableconfiguretriggers(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

alterTableConfigureTriggers (tab_id) Set the enable/disable configuration for the replication triggers according to the origin of
the set.

declare
v_no_id int4;
v_tab_row record;
v_tab_fqname text;
v_n int4;

begin
-- ----
-- Grab the central configuration lock
-- ----
lock table sl_config_lock;

-- ----
-- Get our local node ID

Slony-I 2.1.4 Documentation 181 / 263

-- ----
v_no_id := getLocalNodeId(’_schemadoc’);

-- ----
-- Get the sl_table row and the current tables origin.
-- ----
select T.tab_reloid, T.tab_set,

S.set_origin, PGX.indexrelid,
slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname
into v_tab_row
from sl_table T, sl_set S,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX, "pg_catalog".pg_class PGXC

where T.tab_id = p_tab_id
and T.tab_set = S.set_id
and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid
and PGX.indrelid = T.tab_reloid
and PGX.indexrelid = PGXC.oid
and PGXC.relname = T.tab_idxname
for update;

if not found then
raise exception ’Slony-I: alterTableConfigureTriggers(): Table with id % not found’, ←↩

p_tab_id;
end if;
v_tab_fqname = v_tab_row.tab_fqname;

-- ----
-- Configuration depends on the origin of the table
-- ----
if v_tab_row.set_origin = v_no_id then
-- ----
-- On the origin the log trigger is configured like a default
-- user trigger and the deny access trigger is disabled.
-- ----
execute ’alter table ’ || v_tab_fqname ||

’ enable trigger "_schemadoc_logtrigger"’;
execute ’alter table ’ || v_tab_fqname ||

’ disable trigger "_schemadoc_denyaccess"’;
perform alterTableConfigureTruncateTrigger(v_tab_fqname,
’enable’, ’disable’);

else
-- ----
-- On a replica the log trigger is disabled and the
-- deny access trigger fires in origin session role.
-- ----
execute ’alter table ’ || v_tab_fqname ||

’ disable trigger "_schemadoc_logtrigger"’;
execute ’alter table ’ || v_tab_fqname ||

’ enable trigger "_schemadoc_denyaccess"’;
perform alterTableConfigureTruncateTrigger(v_tab_fqname,
’disable’, ’enable’);

end if;

return p_tab_id;
end;

Slony-I 2.1.4 Documentation 182 / 263

13.26 altertabledroptriggers(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

alterTableDropTriggers (tab_id) Remove the log and deny access triggers from a table.

declare
v_no_id int4;
v_tab_row record;
v_tab_fqname text;
v_n int4;

begin
-- ----
-- Grab the central configuration lock
-- ----
lock table sl_config_lock;

-- ----
-- Get our local node ID
-- ----
v_no_id := getLocalNodeId(’_schemadoc’);

-- ----
-- Get the sl_table row and the current tables origin.
-- ----
select T.tab_reloid, T.tab_set,

S.set_origin, PGX.indexrelid,
slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname
into v_tab_row
from sl_table T, sl_set S,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX, "pg_catalog".pg_class PGXC

where T.tab_id = p_tab_id
and T.tab_set = S.set_id
and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid
and PGX.indrelid = T.tab_reloid
and PGX.indexrelid = PGXC.oid
and PGXC.relname = T.tab_idxname
for update;

if not found then
raise exception ’Slony-I: alterTableDropTriggers(): Table with id % not found’, ←↩

p_tab_id;
end if;
v_tab_fqname = v_tab_row.tab_fqname;

execute ’lock table ’ || v_tab_fqname || ’ in access exclusive mode’;

-- ----
-- Drop both triggers
-- ----
execute ’drop trigger "_schemadoc_logtrigger" on ’ ||

v_tab_fqname;

execute ’drop trigger "_schemadoc_denyaccess" on ’ ||
v_tab_fqname;

perform alterTableDropTruncateTrigger(v_tab_fqname, p_tab_id);

return p_tab_id;

Slony-I 2.1.4 Documentation 183 / 263

end;

13.27 checkmoduleversion()

Function Properties
Language: PLPGSQL, Return Type: text

Inline test function that verifies that slonik request for STORE NODE/INIT CLUSTER is being run against a conformant set of
schema/functions.

declare
moduleversion text;

begin
select into moduleversion getModuleVersion();
if moduleversion <> ’@MODULEVERSION@’ then

raise exception ’Slonik version: @MODULEVERSION@ != Slony-I version in PG build %’,
moduleversion;

end if;
return null;

end;

13.28 cleanupevent(p_interval interval)

Function Properties
Language: PLPGSQL, Return Type: integer

cleaning old data out of sl_confirm, sl_event. Removes all but the last sl_confirm row per (origin,receiver), and then removes all
events that are confirmed by all nodes in the whole cluster up to the last SYNC.

declare
v_max_row record;
v_min_row record;
v_max_sync int8;
v_origin int8;
v_seqno int8;
v_xmin bigint;
v_rc int8;

begin
-- ----
-- First remove all confirmations where origin/receiver no longer exist
-- ----
delete from sl_confirm

where con_origin not in (select no_id from sl_node);
delete from sl_confirm

where con_received not in (select no_id from sl_node);
-- ----
-- Next remove all but the oldest confirm row per origin,receiver pair.
-- Ignore confirmations that are younger than 10 minutes. We currently
-- have an not confirmed suspicion that a possibly lost transaction due
-- to a server crash might have been visible to another session, and
-- that this led to log data that is needed again got removed.
-- ----
for v_max_row in select con_origin, con_received, max(con_seqno) as con_seqno

from sl_confirm
where con_timestamp < (CURRENT_TIMESTAMP - p_interval)
group by con_origin, con_received

loop

Slony-I 2.1.4 Documentation 184 / 263

delete from sl_confirm
where con_origin = v_max_row.con_origin
and con_received = v_max_row.con_received
and con_seqno < v_max_row.con_seqno;

end loop;

-- ----
-- Then remove all events that are confirmed by all nodes in the
-- whole cluster up to the last SYNC
-- ----
for v_min_row in select con_origin, min(con_seqno) as con_seqno

from sl_confirm
group by con_origin

loop
select coalesce(max(ev_seqno), 0) into v_max_sync

from sl_event
where ev_origin = v_min_row.con_origin
and ev_seqno <= v_min_row.con_seqno
and ev_type = ’SYNC’;

if v_max_sync > 0 then
delete from sl_event

where ev_origin = v_min_row.con_origin
and ev_seqno < v_max_sync;

end if;
end loop;

-- ----
-- If cluster has only one node, then remove all events up to
-- the last SYNC - Bug #1538

-- http://gborg.postgresql.org/project/slony1/bugs/bugupdate.php?1538
-- ----

select * into v_min_row from sl_node where
no_id <> getLocalNodeId(’_schemadoc’) limit 1;

if not found then
select ev_origin, ev_seqno into v_min_row from sl_event
where ev_origin = getLocalNodeId(’_schemadoc’)
order by ev_origin desc, ev_seqno desc limit 1;
raise notice ’Slony-I: cleanupEvent(): Single node - deleting events < %’, v_min_row. ←↩

ev_seqno;
delete from sl_event
where

ev_origin = v_min_row.ev_origin and
ev_seqno < v_min_row.ev_seqno;

end if;

if exists (select * from "pg_catalog".pg_class c, "pg_catalog".pg_namespace n, " ←↩
pg_catalog".pg_attribute a where c.relname = ’sl_seqlog’ and n.oid = c.relnamespace ←↩
and a.attrelid = c.oid and a.attname = ’oid’) then

execute ’alter table sl_seqlog set without oids;’;
end if;
-- ----
-- Also remove stale entries from the nodelock table.
-- ----
perform cleanupNodelock();

-- ----
-- Find the eldest event left, for each origin
-- ----
for v_origin, v_seqno, v_xmin in

select ev_origin, ev_seqno, "pg_catalog".txid_snapshot_xmin(ev_snapshot) from sl_event

Slony-I 2.1.4 Documentation 185 / 263

where (ev_origin, ev_seqno) in (select ev_origin, min(ev_seqno) from sl_event ←↩
where ev_type = ’SYNC’ group by ev_origin)

loop
delete from sl_seqlog where seql_origin = v_origin and seql_ev_seqno < v_seqno;
end loop;

v_rc := logswitch_finish();
if v_rc = 0 then -- no switch in progress
perform logswitch_start();

end if;

return 0;
end;

13.29 cleanupnodelock()

Function Properties
Language: PLPGSQL, Return Type: integer

Clean up stale entries when restarting slon

declare
v_row record;

begin
for v_row in select nl_nodeid, nl_conncnt, nl_backendpid

from sl_nodelock
for update

loop
if killBackend(v_row.nl_backendpid, ’NULL’) < 0 then

raise notice ’Slony-I: cleanup stale sl_nodelock entry for pid=%’,
v_row.nl_backendpid;

delete from sl_nodelock where
nl_nodeid = v_row.nl_nodeid and
nl_conncnt = v_row.nl_conncnt;

end if;
end loop;

return 0;
end;

13.30 clonenodefinish(p_no_provider integer, p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Internal part of cloneNodePrepare().

declare
v_row record;

begin
perform "pg_catalog".setval(’sl_local_node_id’, p_no_id);
perform resetSession();
for v_row in select sub_set from sl_subscribe

where sub_receiver = p_no_id
loop
perform updateReloid(v_row.sub_set, p_no_id);

end loop;

Slony-I 2.1.4 Documentation 186 / 263

perform RebuildListenEntries();

delete from sl_confirm
where con_received = p_no_id;

insert into sl_confirm
(con_origin, con_received, con_seqno, con_timestamp)
select con_origin, p_no_id, con_seqno, con_timestamp
from sl_confirm
where con_received = p_no_provider;

insert into sl_confirm
(con_origin, con_received, con_seqno, con_timestamp)
select p_no_provider, p_no_id,

(select max(ev_seqno) from sl_event
where ev_origin = p_no_provider), current_timestamp;

return 0;
end;

13.31 clonenodeprepare(p_no_comment integer, p_no_provider integer, p_no_id
text)

Function Properties
Language: PLPGSQL, Return Type: bigint

Prepare for cloning a node.

begin
perform cloneNodePrepare_int (p_no_id, p_no_provider, p_no_comment);
return createEvent(’_schemadoc’, ’CLONE_NODE’,

p_no_id::text, p_no_provider::text,
p_no_comment::text);

end;

13.32 clonenodeprepare_int(p_no_comment integer, p_no_provider integer, p_no_id
text)

Function Properties
Language: PLPGSQL, Return Type: integer

Internal part of cloneNodePrepare().

begin
insert into sl_node
(no_id, no_active, no_comment)
select p_no_id, no_active, p_no_comment
from sl_node
where no_id = p_no_provider;

insert into sl_path
(pa_server, pa_client, pa_conninfo, pa_connretry)
select pa_server, p_no_id, ’Event pending’, pa_connretry
from sl_path
where pa_client = p_no_provider;

insert into sl_path
(pa_server, pa_client, pa_conninfo, pa_connretry)

Slony-I 2.1.4 Documentation 187 / 263

select p_no_id, pa_client, ’Event pending’, pa_connretry
from sl_path
where pa_server = p_no_provider;

insert into sl_subscribe
(sub_set, sub_provider, sub_receiver, sub_forward, sub_active)
select sub_set, sub_provider, p_no_id, sub_forward, sub_active
from sl_subscribe
where sub_receiver = p_no_provider;

insert into sl_confirm
(con_origin, con_received, con_seqno, con_timestamp)
select con_origin, p_no_id, con_seqno, con_timestamp
from sl_confirm
where con_received = p_no_provider;

perform RebuildListenEntries();

return 0;
end;

13.33 component_state(i_eventtype text, i_event integer, i_starttime integer, i_activity
integer, i_conn_pid text, i_node timestamp with time zone, i_pid bigint, i_actor
text)

Function Properties
Language: PLPGSQL, Return Type: integer

Store state of a Slony component. Useful for monitoring

begin
-- Trim out old state for this component
if not exists (select 1 from sl_components where co_actor = i_actor) then

insert into sl_components
(co_actor, co_pid, co_node, co_connection_pid, co_activity, co_starttime, ←↩

co_event, co_eventtype)
values

(i_actor, i_pid, i_node, i_conn_pid, i_activity, i_starttime, i_event, ←↩
i_eventtype);

else
update sl_components

set
co_connection_pid = i_conn_pid, co_activity = i_activity, co_starttime = ←↩

i_starttime, co_event = i_event,
co_eventtype = i_eventtype

where co_actor = i_actor
and co_starttime < i_starttime;

end if;
return 1;

end

13.34 copyfields(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: text

Slony-I 2.1.4 Documentation 188 / 263

Return a string consisting of what should be appended to a COPY statement to specify fields for the passed-in tab_id. In PG
versions > 7.3, this looks like (field1,field2,...fieldn)

declare
result text;
prefix text;
prec record;

begin
result := ’’;
prefix := ’(’; -- Initially, prefix is the opening paren

for prec in select slon_quote_input(a.attname) as column from sl_table t, pg_catalog. ←↩
pg_attribute a where t.tab_id = p_tab_id and t.tab_reloid = a.attrelid and a.attnum > ←↩
0 and a.attisdropped = false order by attnum

loop
result := result || prefix || prec.column;
prefix := ’,’; -- Subsequently, prepend columns with commas

end loop;
result := result || ’)’;
return result;

end;

13.35 createevent(ev_data1 name, p_event_type text, p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.36 createevent(ev_data2 name, ev_data1 text, p_event_type text, p_cluster_name
text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.37 createevent(ev_data3 name, ev_data2 text, ev_data1 text, p_event_type text,
p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

Slony-I 2.1.4 Documentation 189 / 263

13.38 createevent(ev_data4 name, ev_data3 text, ev_data2 text, ev_data1 text,
p_event_type text, p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.39 createevent(ev_data5 name, ev_data4 text, ev_data3 text, ev_data2 text,
ev_data1 text, p_event_type text, p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.40 createevent(ev_data6 name, ev_data5 text, ev_data4 text, ev_data3 text,
ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.41 createevent(ev_data7 name, ev_data6 text, ev_data5 text, ev_data4 text,
ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name
text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.42 createevent(ev_data8 name, ev_data7 text, ev_data6 text, ev_data5 text,
ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text,
p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

Slony-I 2.1.4 Documentation 190 / 263

13.43 createevent(p_event_type name, p_cluster_name text)

Function Properties
Language: C, Return Type: bigint

FUNCTION createEvent (cluster_name, ev_type [, ev_data [...]]) Create an sl_event entry

_Slony_I_createEvent

13.44 ddlscript_complete(p_only_on_node integer, p_script text, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

ddlScript_complete(set_id, script, only_on_node) After script has run on origin, this fixes up relnames, restores triggers, and
generates a DDL_SCRIPT event to request it to be run on replicated slaves.

declare
v_set_origin int4;
v_query text;
v_row record;

begin
if p_only_on_node = -1 then

perform ddlScript_complete_int(p_set_id,p_only_on_node);
return createEvent(’_schemadoc’, ’DDL_SCRIPT’,

p_set_id::text, p_script::text, p_only_on_node::text);
end if;
if p_only_on_node <> -1 then
for v_row in execute

’select setting from _slony1_saved_session_replication_role’ loop
v_query := ’set session_replication_role to ’ || v_row.setting;

end loop;
execute v_query;
execute ’drop table _slony1_saved_session_replication_role’;
perform ddlScript_complete_int(p_set_id,p_only_on_node);

end if;
return NULL;

end;

13.45 ddlscript_complete_int(p_only_on_node integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

ddlScript_complete_int(set_id, script, only_on_node) Complete processing the DDL_SCRIPT event. This puts tables back into
replicated mode.

declare
v_row record;

begin
perform updateRelname(p_set_id, p_only_on_node);
perform repair_log_triggers(true);
return p_set_id;

end;

Slony-I 2.1.4 Documentation 191 / 263

13.46 ddlscript_prepare(p_only_on_node integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Prepare for DDL script execution on origin

declare
v_set_origin int4;

begin
-- ----
-- Check that the set exists and originates here
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if p_only_on_node = -1 then
if v_set_origin <> getLocalNodeId(’_schemadoc’) then

raise exception ’Slony-I: set % does not originate on local node’,
p_set_id;

end if;
-- ----
-- Create a SYNC event
-- ----
perform createEvent(’_schemadoc’, ’SYNC’, NULL);

else
-- If running "ONLY ON NODE", there are two possibilities:
-- 1. Running on origin, where denyaccess() triggers are already shut off
-- 2. Running on replica, where we need the LOCAL role to suppress denyaccess() ←↩

triggers
execute ’create temp table _slony1_saved_session_replication_role (

setting text);’;
execute ’insert into _slony1_saved_session_replication_role

select setting from pg_catalog.pg_settings
where name = ’’session_replication_role’’;’;

if (v_set_origin <> getLocalNodeId(’_schemadoc’)) then
execute ’set session_replication_role to local;’;

end if;
end if;
return 1;

end;

13.47 ddlscript_prepare_int(p_only_on_node integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

ddlScript_prepare_int (set_id, only_on_node) Do preparatory work for a DDL script, restoring triggers/rules to original state.

declare
v_set_origin int4;
v_no_id int4;
v_row record;

begin
-- ----
-- Check that we either are the set origin or a current

Slony-I 2.1.4 Documentation 192 / 263

-- subscriber of the set.
-- ----
v_no_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_origin <> v_no_id

and not exists (select 1 from sl_subscribe
where sub_set = p_set_id
and sub_receiver = v_no_id)

then
return 0;

end if;

-- ----
-- If execution on only one node is requested, check that
-- we are that node.
-- ----
if p_only_on_node > 0 and p_only_on_node <> v_no_id then
return 0;

end if;

return p_set_id;
end;

13.48 decode_tgargs(bytea)

Function Properties
Language: C, Return Type: text[]

Translates the contents of pg_trigger.tgargs to an array of text arguments

_slon_decode_tgargs

13.49 deny_truncate()

Function Properties
Language: PLPGSQL, Return Type: trigger

trigger function run when a replicated table receives a TRUNCATE request

begin
raise exception ’truncation of replicated table forbidden on subscriber node’;
end

13.50 denyaccess()

Function Properties
Language: C, Return Type: trigger

Trigger function to prevent modifications to a table on a subscriber

_Slony_I_denyAccess

Slony-I 2.1.4 Documentation 193 / 263

13.51 determineattkindunique(p_idx_name text, p_tab_fqname name)

Function Properties
Language: PLPGSQL, Return Type: text

determineAttKindUnique (tab_fqname, indexname) Given a tablename, return the Slony-I specific attkind (used for the log
trigger) of the table. Use the specified unique index or the primary key (if indexname is NULL).

declare
v_tab_fqname_quoted text default ’’;
v_idx_name_quoted text;
v_idxrow record;
v_attrow record;
v_i integer;
v_attno int2;
v_attkind text default ’’;
v_attfound bool;

begin
v_tab_fqname_quoted := slon_quote_input(p_tab_fqname);
v_idx_name_quoted := slon_quote_brute(p_idx_name);
--
-- Ensure that the table exists
--
if (select PGC.relname

from "pg_catalog".pg_class PGC,
"pg_catalog".pg_namespace PGN

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted
and PGN.oid = PGC.relnamespace) is null then

raise exception ’Slony-I: table % not found’, v_tab_fqname_quoted;
end if;

--
-- Lookup the tables primary key or the specified unique index
--
if p_idx_name isnull then
raise exception ’Slony-I: index name must be specified’;

else
select PGXC.relname, PGX.indexrelid, PGX.indkey

into v_idxrow
from "pg_catalog".pg_class PGC,
"pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX,
"pg_catalog".pg_class PGXC

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted
and PGN.oid = PGC.relnamespace
and PGX.indrelid = PGC.oid
and PGX.indexrelid = PGXC.oid
and PGX.indisunique
and slon_quote_brute(PGXC.relname) = v_idx_name_quoted;

if not found then
raise exception ’Slony-I: table % has no unique index %’,

v_tab_fqname_quoted, v_idx_name_quoted;
end if;

end if;

--
-- Loop over the tables attributes and check if they are
-- index attributes. If so, add a "k" to the return value,
-- otherwise add a "v".
--

Slony-I 2.1.4 Documentation 194 / 263

for v_attrow in select PGA.attnum, PGA.attname
from "pg_catalog".pg_class PGC,

"pg_catalog".pg_namespace PGN,
"pg_catalog".pg_attribute PGA

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted

and PGN.oid = PGC.relnamespace
and PGA.attrelid = PGC.oid
and not PGA.attisdropped
and PGA.attnum > 0

order by attnum
loop
v_attfound = ’f’;

v_i := 0;
loop

select indkey[v_i] into v_attno from "pg_catalog".pg_index
where indexrelid = v_idxrow.indexrelid;

if v_attno isnull or v_attno = 0 then
exit;

end if;
if v_attrow.attnum = v_attno then

v_attfound = ’t’;
exit;

end if;
v_i := v_i + 1;

end loop;

if v_attfound then
v_attkind := v_attkind || ’k’;

else
v_attkind := v_attkind || ’v’;

end if;
end loop;

-- Strip off trailing v characters as they are not needed by the logtrigger
v_attkind := pg_catalog.rtrim(v_attkind, ’v’);

--
-- Return the resulting attkind
--
return v_attkind;

end;

13.52 determineidxnameunique(p_idx_name text, p_tab_fqname name)

Function Properties
Language: PLPGSQL, Return Type: name

FUNCTION determineIdxnameUnique (tab_fqname, indexname) Given a tablename, tab_fqname, check that the unique index,
indexname, exists or return the primary key index name for the table. If there is no unique index, it raises an exception.

declare
v_tab_fqname_quoted text default ’’;
v_idxrow record;

begin
v_tab_fqname_quoted := slon_quote_input(p_tab_fqname);
--
-- Ensure that the table exists
--

Slony-I 2.1.4 Documentation 195 / 263

if (select PGC.relname
from "pg_catalog".pg_class PGC,
"pg_catalog".pg_namespace PGN

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted
and PGN.oid = PGC.relnamespace) is null then

raise exception ’Slony-I: determineIdxnameUnique(): table % not found’, ←↩
v_tab_fqname_quoted;

end if;

--
-- Lookup the tables primary key or the specified unique index
--
if p_idx_name isnull then
select PGXC.relname

into v_idxrow
from "pg_catalog".pg_class PGC,
"pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX,
"pg_catalog".pg_class PGXC

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted
and PGN.oid = PGC.relnamespace
and PGX.indrelid = PGC.oid
and PGX.indexrelid = PGXC.oid
and PGX.indisprimary;

if not found then
raise exception ’Slony-I: table % has no primary key’,

v_tab_fqname_quoted;
end if;

else
select PGXC.relname

into v_idxrow
from "pg_catalog".pg_class PGC,
"pg_catalog".pg_namespace PGN,
"pg_catalog".pg_index PGX,
"pg_catalog".pg_class PGXC

where slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) = v_tab_fqname_quoted
and PGN.oid = PGC.relnamespace
and PGX.indrelid = PGC.oid
and PGX.indexrelid = PGXC.oid
and PGX.indisunique
and slon_quote_brute(PGXC.relname) = slon_quote_input(p_idx_name);

if not found then
raise exception ’Slony-I: table % has no unique index %’,

v_tab_fqname_quoted, p_idx_name;
end if;

end if;

--
-- Return the found index name
--
return v_idxrow.relname;

end;

Slony-I 2.1.4 Documentation 196 / 263

13.53 disable_indexes_on_table(i_oid oid)

Function Properties
Language: PLPGSQL, Return Type: integer

disable indexes on the specified table. Used during subscription process to suppress indexes, which allows COPY to go much
faster. This may be set as a SECURITY DEFINER in order to eliminate the need for superuser access by Slony-I.

begin
-- Setting pg_class.relhasindex to false will cause copy not to
-- maintain any indexes. At the end of the copy we will reenable
-- them and reindex the table. This bulk creating of indexes is
-- faster.

update pg_catalog.pg_class set relhasindex =’f’ where oid = i_oid;
return 1;

end

13.54 disablenode(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

process DISABLE_NODE event for node no_id NOTE: This is not yet implemented!

begin
-- **** TODO ****
raise exception ’Slony-I: disableNode() not implemented’;

end;

13.55 disablenode_int(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

begin
-- **** TODO ****
raise exception ’Slony-I: disableNode_int() not implemented’;

end;

13.56 droplisten(p_li_receiver integer, p_li_provider integer, p_li_origin integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

dropListen (li_origin, li_provider, li_receiver) Generate the DROP_LISTEN event.

begin
perform dropListen_int(p_li_origin,

p_li_provider, p_li_receiver);

return createEvent (’_schemadoc’, ’DROP_LISTEN’,
p_li_origin::text, p_li_provider::text, p_li_receiver::text);

end;

Slony-I 2.1.4 Documentation 197 / 263

13.57 droplisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin inte-
ger)

Function Properties
Language: PLPGSQL, Return Type: integer

dropListen (li_origin, li_provider, li_receiver) Process the DROP_LISTEN event, deleting the sl_listen entry for the indicated
(origin,provider,receiver) combination.

begin
delete from sl_listen

where li_origin = p_li_origin
and li_provider = p_li_provider
and li_receiver = p_li_receiver;

if found then
return 1;

else
return 0;

end if;
end;

13.58 dropnode(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

generate DROP_NODE event to drop node node_id from replication

declare
v_node_row record;

begin
-- ----
-- Check that this got called on a different node
-- ----
if p_no_id = getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: DROP_NODE cannot initiate on the dropped node’;

end if;

select * into v_node_row from sl_node
where no_id = p_no_id
for update;

if not found then
raise exception ’Slony-I: unknown node ID %’, p_no_id;

end if;

-- ----
-- Make sure we do not break other nodes subscriptions with this
-- ----
if exists (select true from sl_subscribe

where sub_provider = p_no_id)
then
raise exception ’Slony-I: Node % is still configured as a data provider’,

p_no_id;
end if;

-- ----
-- Make sure no set originates there any more
-- ----
if exists (select true from sl_set

Slony-I 2.1.4 Documentation 198 / 263

where set_origin = p_no_id)
then
raise exception ’Slony-I: Node % is still origin of one or more sets’,

p_no_id;
end if;

-- ----
-- Call the internal drop functionality and generate the event
-- ----
perform dropNode_int(p_no_id);
return createEvent(’_schemadoc’, ’DROP_NODE’,

p_no_id::text);
end;

13.59 dropnode_int(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

internal function to process DROP_NODE event to drop node node_id from replication

declare
v_tab_row record;

begin
-- ----
-- If the dropped node is a remote node, clean the configuration
-- from all traces for it.
-- ----
if p_no_id <> getLocalNodeId(’_schemadoc’) then
delete from sl_subscribe

where sub_receiver = p_no_id;
delete from sl_listen

where li_origin = p_no_id
or li_provider = p_no_id
or li_receiver = p_no_id;

delete from sl_path
where pa_server = p_no_id
or pa_client = p_no_id;

delete from sl_confirm
where con_origin = p_no_id
or con_received = p_no_id;

delete from sl_event
where ev_origin = p_no_id;

delete from sl_node
where no_id = p_no_id;

return p_no_id;
end if;

-- ----
-- This is us ... deactivate the node for now, the daemon
-- will call uninstallNode() in a separate transaction.
-- ----
update sl_node

set no_active = false
where no_id = p_no_id;

-- Rewrite sl_listen table
perform RebuildListenEntries();

Slony-I 2.1.4 Documentation 199 / 263

return p_no_id;
end;

13.60 droppath(p_pa_client integer, p_pa_server integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

Generate DROP_PATH event to drop path from pa_server to pa_client

declare
v_row record;

begin
-- ----
-- There should be no existing subscriptions. Auto unsubscribing
-- is considered too dangerous.
-- ----
for v_row in select sub_set, sub_provider, sub_receiver

from sl_subscribe
where sub_provider = p_pa_server
and sub_receiver = p_pa_client

loop
raise exception

’Slony-I: Path cannot be dropped, subscription of set % needs it’,
v_row.sub_set;

end loop;

-- ----
-- Drop all sl_listen entries that depend on this path
-- ----
for v_row in select li_origin, li_provider, li_receiver

from sl_listen
where li_provider = p_pa_server
and li_receiver = p_pa_client

loop
perform dropListen(

v_row.li_origin, v_row.li_provider, v_row.li_receiver);
end loop;

-- ----
-- Now drop the path and create the event
-- ----
perform dropPath_int(p_pa_server, p_pa_client);

-- Rewrite sl_listen table
perform RebuildListenEntries();

return createEvent (’_schemadoc’, ’DROP_PATH’,
p_pa_server::text, p_pa_client::text);

end;

13.61 droppath_int(p_pa_client integer, p_pa_server integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Process DROP_PATH event to drop path from pa_server to pa_client

Slony-I 2.1.4 Documentation 200 / 263

begin
-- ----
-- Remove any dangling sl_listen entries with the server
-- as provider and the client as receiver. This must have
-- been cleared out before, but obviously was not.
-- ----
delete from sl_listen

where li_provider = p_pa_server
and li_receiver = p_pa_client;

delete from sl_path
where pa_server = p_pa_server
and pa_client = p_pa_client;

if found then
-- Rewrite sl_listen table
perform RebuildListenEntries();

return 1;
else
-- Rewrite sl_listen table
perform RebuildListenEntries();

return 0;
end if;

end;

13.62 dropset(p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

Process DROP_SET event to drop replication of set set_id. This involves: - Removing log and deny access triggers - Removing
all traces of the set configuration, including sequences, tables, subscribers, syncs, and the set itself

declare
v_origin int4;

begin
-- ----
-- Check that the set exists and originates here
-- ----
select set_origin into v_origin from sl_set

where set_id = p_set_id;
if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

p_set_id;
end if;

-- ----
-- Call the internal drop set functionality and generate the event
-- ----
perform dropSet_int(p_set_id);
return createEvent(’_schemadoc’, ’DROP_SET’,

p_set_id::text);
end;

Slony-I 2.1.4 Documentation 201 / 263

13.63 dropset_int(p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

declare
v_tab_row record;

begin
-- ----
-- Restore all tables original triggers and rules and remove
-- our replication stuff.
-- ----
for v_tab_row in select tab_id from sl_table

where tab_set = p_set_id
order by tab_id

loop
perform alterTableDropTriggers(v_tab_row.tab_id);

end loop;

-- ----
-- Remove all traces of the set configuration
-- ----
delete from sl_sequence

where seq_set = p_set_id;
delete from sl_table

where tab_set = p_set_id;
delete from sl_subscribe

where sub_set = p_set_id;
delete from sl_setsync

where ssy_setid = p_set_id;
delete from sl_set

where set_id = p_set_id;

-- Regenerate sl_listen since we revised the subscriptions
perform RebuildListenEntries();

-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();

return p_set_id;
end;

13.64 enable_indexes_on_table(i_oid oid)

Function Properties
Language: PLPGSQL, Return Type: integer

re-enable indexes on the specified table. This may be set as a SECURITY DEFINER in order to eliminate the need for superuser
access by Slony-I.

begin
update pg_catalog.pg_class set relhasindex =’t’ where oid = i_oid;
return 1;

end

Slony-I 2.1.4 Documentation 202 / 263

13.65 enablenode(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

no_id - Node ID # Generate the ENABLE_NODE event for node no_id

declare
v_local_node_id int4;
v_node_row record;

begin
-- ----
-- Check that we are the node to activate and that we are
-- currently disabled.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select * into v_node_row

from sl_node
where no_id = p_no_id
for update;

if not found then
raise exception ’Slony-I: node % not found’, p_no_id;

end if;
if v_node_row.no_active then
raise exception ’Slony-I: node % is already active’, p_no_id;

end if;

-- ----
-- Activate this node and generate the ENABLE_NODE event
-- ----
perform enableNode_int (p_no_id);
return createEvent(’_schemadoc’, ’ENABLE_NODE’,

p_no_id::text);
end;

13.66 enablenode_int(p_no_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

no_id - Node ID # Internal function to process the ENABLE_NODE event for node no_id

declare
v_local_node_id int4;
v_node_row record;
v_sub_row record;

begin
-- ----
-- Check that the node is inactive
-- ----
select * into v_node_row

from sl_node
where no_id = p_no_id
for update;

if not found then
raise exception ’Slony-I: node % not found’, p_no_id;

end if;
if v_node_row.no_active then
return p_no_id;

end if;

Slony-I 2.1.4 Documentation 203 / 263

-- ----
-- Activate the node and generate sl_confirm status rows for it.
-- ----
update sl_node

set no_active = ’t’
where no_id = p_no_id;

insert into sl_confirm
(con_origin, con_received, con_seqno)
select no_id, p_no_id, 0 from sl_node

where no_id != p_no_id
and no_active;

insert into sl_confirm
(con_origin, con_received, con_seqno)
select p_no_id, no_id, 0 from sl_node

where no_id != p_no_id
and no_active;

-- ----
-- Generate ENABLE_SUBSCRIPTION events for all sets that
-- origin here and are subscribed by the just enabled node.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
for v_sub_row in select SUB.sub_set, SUB.sub_provider from

sl_set S,
sl_subscribe SUB
where S.set_origin = v_local_node_id
and S.set_id = SUB.sub_set
and SUB.sub_receiver = p_no_id
for update of S

loop
perform enableSubscription (v_sub_row.sub_set,

v_sub_row.sub_provider, p_no_id);
end loop;

return p_no_id;
end;

13.67 enablesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set
integer)

Function Properties
Language: PLPGSQL, Return Type: integer

enableSubscription (sub_set, sub_provider, sub_receiver) Indicates that sub_receiver intends subscribing to set sub_set from
sub_provider. Work is all done by the internal function enableSubscription_int (sub_set, sub_provider, sub_receiver).

begin
return enableSubscription_int (p_sub_set,

p_sub_provider, p_sub_receiver);
end;

Slony-I 2.1.4 Documentation 204 / 263

13.68 enablesubscription_int(p_sub_receiver integer, p_sub_provider integer, p_sub_set
integer)

Function Properties
Language: PLPGSQL, Return Type: integer

enableSubscription_int (sub_set, sub_provider, sub_receiver) Internal function to enable subscription of node sub_receiver to set
sub_set via node sub_provider. slon does most of the work; all we need do here is to remember that it happened. The function
updates sl_subscribe, indicating that the subscription has become active.

declare
v_n int4;

begin
-- ----
-- The real work is done in the replication engine. All
-- we have to do here is remembering that it happened.
-- ----

-- ----
-- Well, not only ... we might be missing an important event here
-- ----
if not exists (select true from sl_path

where pa_server = p_sub_provider
and pa_client = p_sub_receiver)

then
insert into sl_path

(pa_server, pa_client, pa_conninfo, pa_connretry)
values
(p_sub_provider, p_sub_receiver,
’<event pending>’, 10);

end if;

update sl_subscribe
set sub_active = ’t’
where sub_set = p_sub_set
and sub_receiver = p_sub_receiver;

get diagnostics v_n = row_count;
if v_n = 0 then
insert into sl_subscribe

(sub_set, sub_provider, sub_receiver,
sub_forward, sub_active)
values
(p_sub_set, p_sub_provider, p_sub_receiver,
false, true);

end if;

-- Rewrite sl_listen table
perform RebuildListenEntries();

return p_sub_set;
end;

13.69 failednode(p_backup_node integer, p_failed_node integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Initiate failover from failed_node to backup_node. This function must be called on all nodes, and then waited for the restart of
all node daemons.

Slony-I 2.1.4 Documentation 205 / 263

declare
v_row record;
v_row2 record;
v_n int4;

begin
-- ----
-- All consistency checks first
-- Check that every node that has a path to the failed node
-- also has a path to the backup node.
-- ----
for v_row in select P.pa_client

from sl_path P
where P.pa_server = p_failed_node

and P.pa_client <> p_backup_node
and not exists (select true from sl_path PP

where PP.pa_server = p_backup_node
and PP.pa_client = P.pa_client)

loop
raise exception ’Slony-I: cannot failover - node % has no path to the backup node’,

v_row.pa_client;
end loop;

-- ----
-- Check all sets originating on the failed node
-- ----
for v_row in select set_id

from sl_set
where set_origin = p_failed_node

loop
-- ----
-- Check that the backup node is subscribed to all sets
-- that originate on the failed node
-- ----
select into v_row2 sub_forward, sub_active

from sl_subscribe
where sub_set = v_row.set_id
and sub_receiver = p_backup_node;

if not found then
raise exception ’Slony-I: cannot failover - node % is not subscribed to set %’,

p_backup_node, v_row.set_id;
end if;

-- ----
-- Check that the subscription is active
-- ----
if not v_row2.sub_active then

raise exception ’Slony-I: cannot failover - subscription for set % is not active’,
v_row.set_id;

end if;

-- ----
-- If there are other subscribers, the backup node needs to
-- be a forwarder too.
-- ----
select into v_n count(*)

from sl_subscribe
where sub_set = v_row.set_id
and sub_receiver <> p_backup_node;

if v_n > 0 and not v_row2.sub_forward then
raise exception ’Slony-I: cannot failover - node % is not a forwarder of set %’,

p_backup_node, v_row.set_id;

Slony-I 2.1.4 Documentation 206 / 263

end if;
end loop;

-- ----
-- Terminate all connections of the failed node the hard way
-- ----
perform terminateNodeConnections(p_failed_node);

-- ----
-- Move the sets
-- ----
for v_row in select S.set_id, (select count(*)

from sl_subscribe SUB
where S.set_id = SUB.sub_set

and SUB.sub_receiver <> p_backup_node
and SUB.sub_provider = p_failed_node)

as num_direct_receivers
from sl_set S
where S.set_origin = p_failed_node
for update

loop
-- ----
-- If the backup node is the only direct subscriber ...
-- ----
if v_row.num_direct_receivers = 0 then

raise notice ’failedNode: set % has no other direct receivers - move now’, ←↩
v_row.set_id;

-- ----
-- backup_node is the only direct subscriber, move the set
-- right now. On the backup node itself that includes restoring
-- all user mode triggers, removing the protection trigger,
-- adding the log trigger, removing the subscription and the
-- obsolete setsync status.
-- ----
if p_backup_node = getLocalNodeId(’_schemadoc’) then

update sl_set set set_origin = p_backup_node
where set_id = v_row.set_id;

delete from sl_setsync
where ssy_setid = v_row.set_id;

for v_row2 in select * from sl_table
where tab_set = v_row.set_id
order by tab_id

loop
perform alterTableConfigureTriggers(v_row2.tab_id);

end loop;
end if;

delete from sl_subscribe
where sub_set = v_row.set_id

and sub_receiver = p_backup_node;
else

raise notice ’failedNode: set % has other direct receivers - change providers only’, ←↩
v_row.set_id;

-- ----
-- Backup node is not the only direct subscriber or not
-- a direct subscriber at all.
-- This means that at this moment, we redirect all possible
-- direct subscribers to receive from the backup node, and the
-- backup node itself to receive from another one.
-- The admin utility will wait for the slon engine to

Slony-I 2.1.4 Documentation 207 / 263

-- restart and then call failedNode2() on the node with
-- the highest SYNC and redirect this to it on
-- backup node later.
-- ----
update sl_subscribe

set sub_provider = (select min(SS.sub_receiver)
from sl_subscribe SS
where SS.sub_set = v_row.set_id
and SS.sub_receiver <> p_backup_node
and SS.sub_forward
and exists (

select 1 from sl_path
where pa_server = SS.sub_receiver
and pa_client = p_backup_node

))
where sub_set = v_row.set_id

and sub_receiver = p_backup_node;
update sl_subscribe

set sub_provider = (select min(SS.sub_receiver)
from sl_subscribe SS
where SS.sub_set = v_row.set_id

and SS.sub_receiver <> p_failed_node
and SS.sub_forward
and exists (

select 1 from sl_path
where pa_server = SS.sub_receiver

and pa_client = sl_subscribe.sub_receiver
))

where sub_set = v_row.set_id
and sub_receiver <> p_backup_node;

update sl_subscribe
set sub_provider = p_backup_node
where sub_set = v_row.set_id

and sub_receiver <> p_backup_node
and exists (
select 1 from sl_path
where pa_server = p_backup_node

and pa_client = sl_subscribe.sub_receiver
);

delete from sl_subscribe
where sub_set = v_row.set_id

and sub_receiver = p_backup_node;

end if;
end loop;

-- Rewrite sl_listen table
perform RebuildListenEntries();

-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();

-- ----
-- Make sure the node daemon will restart
-- ----
notify "_schemadoc_Restart";

-- ----
-- That is it - so far.
-- ----

Slony-I 2.1.4 Documentation 208 / 263

return p_failed_node;
end;

13.70 failednode2(p_ev_seqfake integer, p_ev_seqno integer, p_set_id integer, p_backup_node
bigint, p_failed_node bigint)

Function Properties
Language: PLPGSQL, Return Type: bigint

FUNCTION failedNode2 (failed_node, backup_node, set_id, ev_seqno, ev_seqfake) On the node that has the highest sequence
number of the failed node, fake the FAILOVER_SET event.

declare
v_row record;

begin
select * into v_row

from sl_event
where ev_origin = p_failed_node
and ev_seqno = p_ev_seqno;

if not found then
raise exception ’Slony-I: event %,% not found’,

p_failed_node, p_ev_seqno;
end if;

insert into sl_event
(ev_origin, ev_seqno, ev_timestamp,
ev_snapshot,
ev_type, ev_data1, ev_data2, ev_data3)
values
(p_failed_node, p_ev_seqfake, CURRENT_TIMESTAMP,
v_row.ev_snapshot,
’FAILOVER_SET’, p_failed_node::text, p_backup_node::text,
p_set_id::text);

insert into sl_confirm
(con_origin, con_received, con_seqno, con_timestamp)
values
(p_failed_node, getLocalNodeId(’_schemadoc’),
p_ev_seqfake, CURRENT_TIMESTAMP);

notify "_schemadoc_Restart";

perform failoverSet_int(p_failed_node,
p_backup_node, p_set_id, p_ev_seqfake);

return p_ev_seqfake;
end;

13.71 failoverset_int(p_wait_seqno integer, p_set_id integer, p_backup_node inte-
ger, p_failed_node bigint)

Function Properties
Language: PLPGSQL, Return Type: integer

FUNCTION failoverSet_int (failed_node, backup_node, set_id, wait_seqno) Finish failover for one set.

declare
v_row record;

Slony-I 2.1.4 Documentation 209 / 263

v_last_sync int8;
begin

-- ----
-- Change the origin of the set now to the backup node.
-- On the backup node this includes changing all the
-- trigger and protection stuff
-- ----
if p_backup_node = getLocalNodeId(’_schemadoc’) then
delete from sl_setsync

where ssy_setid = p_set_id;
delete from sl_subscribe

where sub_set = p_set_id
and sub_receiver = p_backup_node;

update sl_set
set set_origin = p_backup_node
where set_id = p_set_id;

for v_row in select * from sl_table
where tab_set = p_set_id
order by tab_id

loop
perform alterTableConfigureTriggers(v_row.tab_id);

end loop;
insert into sl_event

(ev_origin, ev_seqno, ev_timestamp,
ev_snapshot,
ev_type, ev_data1, ev_data2, ev_data3, ev_data4)
values
(p_backup_node, "pg_catalog".nextval(’sl_event_seq’), CURRENT_TIMESTAMP,
pg_catalog.txid_current_snapshot(),
’ACCEPT_SET’, p_set_id::text,
p_failed_node::text, p_backup_node::text,
p_wait_seqno::text);

else
delete from sl_subscribe

where sub_set = p_set_id
and sub_receiver = p_backup_node;

update sl_set
set set_origin = p_backup_node
where set_id = p_set_id;

end if;

-- update sl_node
-- set no_active=false WHERE
-- no_id=p_failed_node;

-- Rewrite sl_listen table
perform RebuildListenEntries();

-- ----
-- If we are a subscriber of the set ourself, change our
-- setsync status to reflect the new set origin.
-- ----
if exists (select true from sl_subscribe

where sub_set = p_set_id
and sub_receiver = getLocalNodeId(

’_schemadoc’))
then
delete from sl_setsync

where ssy_setid = p_set_id;

select coalesce(max(ev_seqno), 0) into v_last_sync

Slony-I 2.1.4 Documentation 210 / 263

from sl_event
where ev_origin = p_backup_node
and ev_type = ’SYNC’;

if v_last_sync > 0 then
insert into sl_setsync

(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
select p_set_id, p_backup_node, v_last_sync,
ev_snapshot, NULL
from sl_event
where ev_origin = p_backup_node

and ev_seqno = v_last_sync;
else

insert into sl_setsync
(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
values (p_set_id, p_backup_node, ’0’,
’1:1:’, NULL);

end if;

end if;

return p_failed_node;
end;

13.72 finishtableaftercopy(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Reenable index maintenance and reindex the table

declare
v_tab_oid oid;
v_tab_fqname text;

begin
-- ----
-- Get the tables OID and fully qualified name
-- ---
select PGC.oid,

slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname

into v_tab_oid, v_tab_fqname
from sl_table T,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where T.tab_id = p_tab_id
and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid;

if not found then
raise exception ’Table with ID % not found in sl_table’, p_tab_id;

end if;

-- ----
-- Reenable indexes and reindex the table.
-- ----
perform enable_indexes_on_table(v_tab_oid);
execute ’reindex table ’ || slon_quote_input(v_tab_fqname);

return 1;
end;

Slony-I 2.1.4 Documentation 211 / 263

13.73 forwardconfirm(p_con_timestamp integer, p_con_seqno integer, p_con_received
bigint, p_con_origin timestamp without time zone)

Function Properties
Language: PLPGSQL, Return Type: bigint

forwardConfirm (p_con_origin, p_con_received, p_con_seqno, p_con_timestamp) Confirms (recorded in sl_confirm) that items
from p_con_origin up to p_con_seqno have been received by node p_con_received as of p_con_timestamp, and raises an event
to forward this confirmation.

declare
v_max_seqno bigint;

begin
select into v_max_seqno coalesce(max(con_seqno), 0)

from sl_confirm
where con_origin = p_con_origin
and con_received = p_con_received;

if v_max_seqno < p_con_seqno then
insert into sl_confirm

(con_origin, con_received, con_seqno, con_timestamp)
values (p_con_origin, p_con_received, p_con_seqno,
p_con_timestamp);

v_max_seqno = p_con_seqno;
end if;

return v_max_seqno;
end;

13.74 generate_sync_event(p_interval interval)

Function Properties
Language: PLPGSQL, Return Type: integer

Generate a sync event if there has not been one in the requested interval, and this is a provider node.

declare
v_node_row record;

BEGIN
select 1 into v_node_row from sl_event

where ev_type = ’SYNC’ and ev_origin = getLocalNodeId(’_schemadoc’)
and ev_timestamp > now() - p_interval limit 1;

if not found then
-- If there has been no SYNC in the last interval, then push one
perform createEvent(’_schemadoc’, ’SYNC’, NULL);
return 1;

else
return 0;

end if;
end;

13.75 getlocalnodeid(p_cluster name)

Function Properties
Language: C, Return Type: integer

Returns the node ID of the node being serviced on the local database

Slony-I 2.1.4 Documentation 212 / 263

_Slony_I_getLocalNodeId

13.76 getmoduleversion()

Function Properties
Language: C, Return Type: text

Returns the compiled-in version number of the Slony-I shared object

_Slony_I_getModuleVersion

13.77 initializelocalnode(p_comment integer, p_local_node_id text)

Function Properties
Language: PLPGSQL, Return Type: integer

no_id - Node ID # no_comment - Human-oriented comment Initializes the new node, no_id

declare
v_old_node_id int4;
v_first_log_no int4;
v_event_seq int8;

begin
-- ----
-- Make sure this node is uninitialized or got reset
-- ----
select last_value::int4 into v_old_node_id from sl_local_node_id;
if v_old_node_id != -1 then
raise exception ’Slony-I: This node is already initialized’;

end if;

-- ----
-- Set sl_local_node_id to the requested value and add our
-- own system to sl_node.
-- ----
perform setval(’sl_local_node_id’, p_local_node_id);
perform storeNode_int (p_local_node_id, p_comment);

if (pg_catalog.current_setting(’max_identifier_length’)::integer - pg_catalog.length(’ ←↩
schemadoc’)) < 5 then

raise notice ’Slony-I: Cluster name length [%] versus system max_identifier_length [%] ←↩
’, pg_catalog.length(’schemadoc’), pg_catalog.current_setting(’max_identifier_length ←↩
’);

raise notice ’leaves narrow/no room for some Slony-I-generated objects (such as indexes ←↩
).’;

raise notice ’You may run into problems later!’;
end if;

return p_local_node_id;
end;

13.78 is_node_reachable(receiver_node_id integer, origin_node_id integer)

Function Properties
Language: PLPGSQL, Return Type: boolean

Slony-I 2.1.4 Documentation 213 / 263

Is the receiver node reachable from the origin, via any of the listen paths?

declare
listen_row record;
reachable boolean;

begin
reachable:=false;
select * into listen_row from sl_listen where

li_origin=origin_node_id and li_receiver=receiver_node_id;
if found then

reachable:=true;
end if;
return reachable;

end

13.79 issubscriptioninprogress(p_add_id integer)

Function Properties
Language: PLPGSQL, Return Type: boolean

Checks to see if a subscription for the indicated set is in progress. Returns true if a subscription is in progress. Otherwise false

begin
if exists (select true from sl_event

where ev_type = ’ENABLE_SUBSCRIPTION’
and ev_data1 = p_add_id::text
and ev_seqno > (select max(con_seqno) from sl_confirm

where con_origin = ev_origin
and con_received::text = ev_data3))

then
return true;

else
return false;

end if;
end;

13.80 killbackend(p_signame integer, p_pid text)

Function Properties
Language: C, Return Type: integer

Send a signal to a postgres process. Requires superuser rights

_Slony_I_killBackend

13.81 lockedset()

Function Properties
Language: C, Return Type: trigger

Trigger function to prevent modifications to a table before and after a moveSet()

_Slony_I_lockedSet

Slony-I 2.1.4 Documentation 214 / 263

13.82 lockset(p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

lockSet(set_id) Add a special trigger to all tables of a set that disables access to it.

declare
v_local_node_id int4;
v_set_row record;
v_tab_row record;

begin
-- ----
-- Check that the set exists and that we are the origin
-- and that it is not already locked.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select * into v_set_row from sl_set

where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_row.set_origin <> v_local_node_id then
raise exception ’Slony-I: set % does not originate on local node’,

p_set_id;
end if;
if v_set_row.set_locked notnull then
raise exception ’Slony-I: set % is already locked’, p_set_id;

end if;

-- ----
-- Place the lockedSet trigger on all tables in the set.
-- ----
for v_tab_row in select T.tab_id,

slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname
from sl_table T,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where T.tab_set = p_set_id

and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid

order by tab_id
loop
execute ’create trigger "_schemadoc_lockedset" ’ ||

’before insert or update or delete on ’ ||
v_tab_row.tab_fqname || ’ for each row execute procedure
lockedSet (’’_schemadoc’’);’;

end loop;

-- ----
-- Remember our snapshots xmax as for the set locking
-- ----
update sl_set

set set_locked = "pg_catalog".txid_snapshot_xmax("pg_catalog".txid_current_snapshot() ←↩
)

where set_id = p_set_id;

return p_set_id;
end;

Slony-I 2.1.4 Documentation 215 / 263

13.83 log_truncate()

Function Properties
Language: PLPGSQL, Return Type: trigger

trigger function run when a replicated table receives a TRUNCATE request

declare
c_command text;
c_log integer;
c_node integer;
c_tabid integer;

begin
c_tabid := tg_argv[0];

c_node := getLocalNodeId(’_schemadoc’);
c_command := ’TRUNCATE TABLE ONLY "’ || tab_nspname || ’"."’ ||

tab_relname || ’" CASCADE’
from sl_table where tab_id = c_tabid;

select last_value into c_log from sl_log_status;
if c_log in (0, 2) then

insert into sl_log_1 (log_origin, log_txid, log_tableid, log_actionseq, log_cmdtype, ←↩
log_cmddata)

values (c_node, pg_catalog.txid_current(), c_tabid, nextval(’"_schemadoc". ←↩
sl_action_seq’), ’T’, c_command);

else -- (1, 3)
insert into sl_log_2 (log_origin, log_txid, log_tableid, log_actionseq, log_cmdtype, ←↩

log_cmddata)
values (c_node, pg_catalog.txid_current(), c_tabid, nextval(’"_schemadoc". ←↩

sl_action_seq’), ’T’, c_command);
end if;
return NULL;
end

13.84 logswitch_finish()

Function Properties
Language: PLPGSQL, Return Type: integer

logswitch_finish() Attempt to finalize a log table switch in progress return values: -1 if switch in progress, but not complete 0 if
no switch in progress 1 if performed truncate on sl_log_2 2 if performed truncate on sl_log_1

DECLARE
v_current_status int4;
v_dummy record;
v_origin int8;
v_seqno int8;
v_xmin bigint;
v_purgeable boolean;

BEGIN
-- ----
-- Get the current log status.
-- ----
select last_value into v_current_status from sl_log_status;

-- ----
-- status value 0 or 1 means that there is no log switch in progress
-- ----
if v_current_status = 0 or v_current_status = 1 then
return 0;

Slony-I 2.1.4 Documentation 216 / 263

end if;

-- ----
-- status = 2: sl_log_1 active, cleanup sl_log_2
-- ----
if v_current_status = 2 then
v_purgeable := ’true’;

-- ----
-- Attempt to lock sl_log_2 in order to make sure there are no other transactions
-- currently writing to it. Exit if it is still in use. This prevents TRUNCATE from
-- blocking writers to sl_log_2 while it is waiting for a lock. It also prevents it
-- immediately truncating log data generated inside the transaction which was active
-- when logswitch_finish() was called (and was blocking TRUNCATE) as soon as that
-- transaction is committed.
-- ----
begin

lock table sl_log_2 in access exclusive mode nowait;
exception when lock_not_available then

raise notice ’Slony-I: could not lock sl_log_2 - sl_log_2 not truncated’;
return -1;

end;

-- ----
-- The cleanup thread calls us after it did the delete and
-- vacuum of both log tables. If sl_log_2 is empty now, we
-- can truncate it and the log switch is done.
-- ----

for v_origin, v_seqno, v_xmin in
select ev_origin, ev_seqno, "pg_catalog".txid_snapshot_xmin(ev_snapshot) from ←↩

sl_event
where (ev_origin, ev_seqno) in (select ev_origin, min(ev_seqno) from sl_event ←↩

where ev_type = ’SYNC’ group by ev_origin)
loop

if exists (select 1 from sl_log_2 where log_origin = v_origin and log_txid >= v_xmin ←↩
limit 1) then

v_purgeable := ’false’;
end if;

end loop;
if not v_purgeable then

-- ----
-- Found a row ... log switch is still in progress.
-- ----
raise notice ’Slony-I: log switch to sl_log_1 still in progress - sl_log_2 not ←↩

truncated’;
return -1;

end if;

raise notice ’Slony-I: log switch to sl_log_1 complete - truncate sl_log_2’;
truncate sl_log_2;
if exists (select * from "pg_catalog".pg_class c, "pg_catalog".pg_namespace n, " ←↩

pg_catalog".pg_attribute a where c.relname = ’sl_log_2’ and n.oid = c.relnamespace ←↩
and a.attrelid = c.oid and a.attname = ’oid’) then

execute ’alter table sl_log_2 set without oids;’;
end if;
perform "pg_catalog".setval(’sl_log_status’, 0);
-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();

return 1;
end if;

Slony-I 2.1.4 Documentation 217 / 263

-- ----
-- status = 3: sl_log_2 active, cleanup sl_log_1
-- ----
if v_current_status = 3 then
v_purgeable := ’true’;

-- ----
-- Attempt to lock sl_log_1 in order to make sure there are no other transactions
-- currently writing to it. Exit if it is still in use. This prevents TRUNCATE from
-- blocking writes to sl_log_1 while it is waiting for a lock. It also prevents it
-- immediately truncating log data generated inside the transaction which was active
-- when logswitch_finish() was called (and was blocking TRUNCATE) as soon as that
-- transaction is committed.
-- ----
begin

lock table sl_log_1 in access exclusive mode nowait;
exception when lock_not_available then

raise notice ’Slony-I: could not lock sl_log_1 - sl_log_1 not truncated’;
return -1;

end;

-- ----
-- The cleanup thread calls us after it did the delete and
-- vacuum of both log tables. If sl_log_2 is empty now, we
-- can truncate it and the log switch is done.
-- ----

for v_origin, v_seqno, v_xmin in
select ev_origin, ev_seqno, "pg_catalog".txid_snapshot_xmin(ev_snapshot) from ←↩

sl_event
where (ev_origin, ev_seqno) in (select ev_origin, min(ev_seqno) from sl_event ←↩

where ev_type = ’SYNC’ group by ev_origin)
loop

if (exists (select 1 from sl_log_1 where log_origin = v_origin and log_txid >= v_xmin ←↩
limit 1)) then

v_purgeable := ’false’;
end if;

end loop;
if not v_purgeable then

-- ----
-- Found a row ... log switch is still in progress.
-- ----
raise notice ’Slony-I: log switch to sl_log_2 still in progress - sl_log_1 not ←↩

truncated’;
return -1;

end if;

raise notice ’Slony-I: log switch to sl_log_2 complete - truncate sl_log_1’;
truncate sl_log_1;
if exists (select * from "pg_catalog".pg_class c, "pg_catalog".pg_namespace n, " ←↩

pg_catalog".pg_attribute a where c.relname = ’sl_log_1’ and n.oid = c.relnamespace ←↩
and a.attrelid = c.oid and a.attname = ’oid’) then

execute ’alter table sl_log_1 set without oids;’;
end if;
perform "pg_catalog".setval(’sl_log_status’, 1);
-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();
return 2;

end if;
END;

Slony-I 2.1.4 Documentation 218 / 263

13.85 logswitch_start()

Function Properties
Language: PLPGSQL, Return Type: integer

logswitch_start() Initiate a log table switch if none is in progress

DECLARE
v_current_status int4;

BEGIN
-- ----
-- Get the current log status.
-- ----
select last_value into v_current_status from sl_log_status;

-- ----
-- status = 0: sl_log_1 active, sl_log_2 clean
-- Initiate a switch to sl_log_2.
-- ----
if v_current_status = 0 then
perform "pg_catalog".setval(’sl_log_status’, 3);
perform registry_set_timestamp(

’logswitch.laststart’, now());
raise notice ’Slony-I: Logswitch to sl_log_2 initiated’;
return 2;

end if;

-- ----
-- status = 1: sl_log_2 active, sl_log_1 clean
-- Initiate a switch to sl_log_1.
-- ----
if v_current_status = 1 then
perform "pg_catalog".setval(’sl_log_status’, 2);
perform registry_set_timestamp(

’logswitch.laststart’, now());
raise notice ’Slony-I: Logswitch to sl_log_1 initiated’;
return 1;

end if;

raise exception ’Previous logswitch still in progress’;
END;

13.86 logtrigger()

Function Properties
Language: C, Return Type: trigger

This is the trigger that is executed on the origin node that causes updates to be recorded in sl_log_1/sl_log_2.

_Slony_I_logTrigger

13.87 mergeset(p_add_id integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

Generate MERGE_SET event to request that sets be merged together. Both sets must exist, and originate on the same node. They
must be subscribed by the same set of nodes.

Slony-I 2.1.4 Documentation 219 / 263

declare
v_origin int4;
in_progress boolean;

begin
-- ----
-- Check that both sets exist and originate here
-- ----
if p_set_id = p_add_id then
raise exception ’Slony-I: merged set ids cannot be identical’;

end if;
select set_origin into v_origin from sl_set

where set_id = p_set_id;
if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

p_set_id;
end if;

select set_origin into v_origin from sl_set
where set_id = p_add_id;

if not found then
raise exception ’Slony-I: set % not found’, p_add_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

p_add_id;
end if;

-- ----
-- Check that both sets are subscribed by the same set of nodes
-- ----
if exists (select true from sl_subscribe SUB1

where SUB1.sub_set = p_set_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

from sl_subscribe SUB2
where SUB2.sub_set = p_add_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

p_set_id, p_add_id;
end if;

if exists (select true from sl_subscribe SUB1
where SUB1.sub_set = p_add_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

from sl_subscribe SUB2
where SUB2.sub_set = p_set_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

p_add_id, p_set_id;
end if;

-- ----
-- Check that all ENABLE_SUBSCRIPTION events for the set are confirmed
-- ----
select isSubscriptionInProgress(p_add_id) into in_progress ;

if in_progress then
raise exception ’Slony-I: set % has subscriptions in progress - cannot merge’,

p_add_id;

Slony-I 2.1.4 Documentation 220 / 263

end if;

-- ----
-- Create a SYNC event, merge the sets, create a MERGE_SET event
-- ----
perform createEvent(’_schemadoc’, ’SYNC’, NULL);
perform mergeSet_int(p_set_id, p_add_id);
return createEvent(’_schemadoc’, ’MERGE_SET’,

p_set_id::text, p_add_id::text);
end;

13.88 mergeset_int(p_add_id integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

mergeSet_int(set_id, add_id) - Perform MERGE_SET event, merging all objects from set add_id into set set_id.

begin
update sl_sequence

set seq_set = p_set_id
where seq_set = p_add_id;

update sl_table
set tab_set = p_set_id
where tab_set = p_add_id;

delete from sl_subscribe
where sub_set = p_add_id;

delete from sl_setsync
where ssy_setid = p_add_id;

delete from sl_set
where set_id = p_add_id;

return p_set_id;
end;

13.89 moveset(p_new_origin integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

moveSet(set_id, new_origin) Generate MOVE_SET event to request that the origin for set set_id be moved to node new_origin

declare
v_local_node_id int4;
v_set_row record;
v_sub_row record;
v_sync_seqno int8;
v_lv_row record;

begin
-- ----
-- Check that the set is locked and that this locking
-- happened long enough ago.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select * into v_set_row from sl_set

where set_id = p_set_id
for update;

Slony-I 2.1.4 Documentation 221 / 263

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_row.set_origin <> v_local_node_id then
raise exception ’Slony-I: set % does not originate on local node’,

p_set_id;
end if;
if v_set_row.set_locked isnull then
raise exception ’Slony-I: set % is not locked’, p_set_id;

end if;
if v_set_row.set_locked > "pg_catalog".txid_snapshot_xmin("pg_catalog". ←↩

txid_current_snapshot()) then
raise exception ’Slony-I: cannot move set % yet, transactions < % are still in progress ←↩

’,
p_set_id, v_set_row.set_locked;

end if;

-- ----
-- Unlock the set
-- ----
perform unlockSet(p_set_id);

-- ----
-- Check that the new_origin is an active subscriber of the set
-- ----
select * into v_sub_row from sl_subscribe

where sub_set = p_set_id
and sub_receiver = p_new_origin;

if not found then
raise exception ’Slony-I: set % is not subscribed by node %’,

p_set_id, p_new_origin;
end if;
if not v_sub_row.sub_active then
raise exception ’Slony-I: subsctiption of node % for set % is inactive’,

p_new_origin, p_set_id;
end if;

-- ----
-- Reconfigure everything
-- ----
perform moveSet_int(p_set_id, v_local_node_id,

p_new_origin, 0);

perform RebuildListenEntries();

-- ----
-- At this time we hold access exclusive locks for every table
-- in the set. But we did move the set to the new origin, so the
-- createEvent() we are doing now will not record the sequences.
-- ----
v_sync_seqno := createEvent(’_schemadoc’, ’SYNC’);
insert into sl_seqlog

(seql_seqid, seql_origin, seql_ev_seqno, seql_last_value)
select seq_id, v_local_node_id, v_sync_seqno, seq_last_value
from sl_seqlastvalue
where seq_set = p_set_id;

-- ----
-- Finally we generate the real event
-- ----
return createEvent(’_schemadoc’, ’MOVE_SET’,

p_set_id::text, v_local_node_id::text, p_new_origin::text);

Slony-I 2.1.4 Documentation 222 / 263

end;

13.90 moveset_int(p_wait_seqno integer, p_new_origin integer, p_old_origin inte-
ger, p_set_id bigint)

Function Properties
Language: PLPGSQL, Return Type: integer

moveSet(set_id, old_origin, new_origin, wait_seqno) Process MOVE_SET event to request that the origin for set set_id be moved
from old_origin to node new_origin

declare
v_local_node_id int4;
v_tab_row record;
v_sub_row record;
v_sub_node int4;
v_sub_last int4;
v_sub_next int4;
v_last_sync int8;

begin
-- ----
-- Get our local node ID
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);

-- On the new origin, raise an event - ACCEPT_SET
if v_local_node_id = p_new_origin then
-- Create a SYNC event as well so that the ACCEPT_SET has
-- the same snapshot as the last SYNC generated by the new
-- origin. This snapshot will be used by other nodes to
-- finalize the setsync status.
perform createEvent(’_schemadoc’, ’SYNC’, NULL);
perform createEvent(’_schemadoc’, ’ACCEPT_SET’,

p_set_id::text, p_old_origin::text,
p_new_origin::text, p_wait_seqno::text);

end if;

-- ----
-- Next we have to reverse the subscription path
-- ----
v_sub_last = p_new_origin;
select sub_provider into v_sub_node

from sl_subscribe
where sub_set = p_set_id
and sub_receiver = p_new_origin;

if not found then
raise exception ’Slony-I: subscription path broken in moveSet_int’;

end if;
while v_sub_node <> p_old_origin loop
-- ----
-- Tracing node by node, the old receiver is now in
-- v_sub_last and the old provider is in v_sub_node.
-- ----

-- ----
-- Get the current provider of this node as next
-- and change the provider to the previous one in
-- the reverse chain.
-- ----

Slony-I 2.1.4 Documentation 223 / 263

select sub_provider into v_sub_next
from sl_subscribe
where sub_set = p_set_id
and sub_receiver = v_sub_node

for update;
if not found then

raise exception ’Slony-I: subscription path broken in moveSet_int’;
end if;
update sl_subscribe

set sub_provider = v_sub_last
where sub_set = p_set_id
and sub_receiver = v_sub_node;

v_sub_last = v_sub_node;
v_sub_node = v_sub_next;

end loop;

-- ----
-- This includes creating a subscription for the old origin
-- ----
insert into sl_subscribe

(sub_set, sub_provider, sub_receiver,
sub_forward, sub_active)
values (p_set_id, v_sub_last, p_old_origin, true, true);

if v_local_node_id = p_old_origin then
select coalesce(max(ev_seqno), 0) into v_last_sync

from sl_event
where ev_origin = p_new_origin
and ev_type = ’SYNC’;

if v_last_sync > 0 then
insert into sl_setsync

(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
select p_set_id, p_new_origin, v_last_sync,
ev_snapshot, NULL
from sl_event
where ev_origin = p_new_origin

and ev_seqno = v_last_sync;
else

insert into sl_setsync
(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
values (p_set_id, p_new_origin, ’0’,
’1:1:’, NULL);

end if;
end if;

-- ----
-- Now change the ownership of the set.
-- ----
update sl_set

set set_origin = p_new_origin
where set_id = p_set_id;

-- ----
-- On the new origin, delete the obsolete setsync information
-- and the subscription.
-- ----
if v_local_node_id = p_new_origin then
delete from sl_setsync

where ssy_setid = p_set_id;
else

Slony-I 2.1.4 Documentation 224 / 263

if v_local_node_id <> p_old_origin then
--
-- On every other node, change the setsync so that it will
-- pick up from the new origins last known sync.
--
delete from sl_setsync

where ssy_setid = p_set_id;
select coalesce(max(ev_seqno), 0) into v_last_sync

from sl_event
where ev_origin = p_new_origin

and ev_type = ’SYNC’;
if v_last_sync > 0 then

insert into sl_setsync
(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
select p_set_id, p_new_origin, v_last_sync,
ev_snapshot, NULL
from sl_event
where ev_origin = p_new_origin
and ev_seqno = v_last_sync;

else
insert into sl_setsync

(ssy_setid, ssy_origin, ssy_seqno,
ssy_snapshot, ssy_action_list)
values (p_set_id, p_new_origin,
’0’, ’1:1:’, NULL);

end if;
end if;

end if;
delete from sl_subscribe

where sub_set = p_set_id
and sub_receiver = p_new_origin;

-- Regenerate sl_listen since we revised the subscriptions
perform RebuildListenEntries();

-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();

-- ----
-- If we are the new or old origin, we have to
-- adjust the log and deny access trigger configuration.
-- ----
if v_local_node_id = p_old_origin or v_local_node_id = p_new_origin then
for v_tab_row in select tab_id from sl_table

where tab_set = p_set_id
order by tab_id

loop
perform alterTableConfigureTriggers(v_tab_row.tab_id);

end loop;
end if;

return p_set_id;
end;

13.91 preparetableforcopy(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Slony-I 2.1.4 Documentation 225 / 263

Delete all data and suppress index maintenance

declare
v_tab_oid oid;
v_tab_fqname text;

begin
-- ----
-- Get the OID and fully qualified name for the table
-- ---
select PGC.oid,

slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname

into v_tab_oid, v_tab_fqname
from sl_table T,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where T.tab_id = p_tab_id
and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid;

if not found then
raise exception ’Table with ID % not found in sl_table’, p_tab_id;

end if;

-- ----
-- Try using truncate to empty the table and fallback to
-- delete on error.
-- ----
perform TruncateOnlyTable(v_tab_fqname);
raise notice ’truncate of % succeeded’, v_tab_fqname;

-- suppress index activity
perform disable_indexes_on_table(v_tab_oid);

return 1;
exception when others then
raise notice ’truncate of % failed - doing delete’, v_tab_fqname;
perform disable_indexes_on_table(v_tab_oid);
execute ’delete from only ’ || slon_quote_input(v_tab_fqname);
return 0;

end;

13.92 rebuildlistenentries()

Function Properties
Language: PLPGSQL, Return Type: integer

RebuildListenEntries() Invoked by various subscription and path modifying functions, this rewrites the sl_listen entries, adding
in all the ones required to allow communications between nodes in the Slony-I cluster.

declare
v_row record;

begin
-- First remove the entire configuration
delete from sl_listen;

-- Second populate the sl_listen configuration with a full
-- network of all possible paths.
insert into sl_listen

(li_origin, li_provider, li_receiver)
select pa_server, pa_server, pa_client from sl_path;

while true loop

Slony-I 2.1.4 Documentation 226 / 263

insert into sl_listen
(li_origin, li_provider, li_receiver)

select distinct li_origin, pa_server, pa_client
from sl_listen, sl_path
where li_receiver = pa_server
and li_origin <> pa_client

except
select li_origin, li_provider, li_receiver

from sl_listen;

if not found then
exit;

end if;
end loop;

-- We now replace specific event-origin,receiver combinations
-- with a configuration that tries to avoid events arriving at
-- a node before the data provider actually has the data ready.

-- Loop over every possible pair of receiver and event origin
for v_row in select N1.no_id as receiver, N2.no_id as origin

from sl_node as N1, sl_node as N2
where N1.no_id <> N2.no_id

loop
-- 1st choice:
-- If we use the event origin as a data provider for any
-- set that originates on that very node, we are a direct
-- subscriber to that origin and listen there only.
if exists (select true from sl_set, sl_subscribe , sl_node p

where set_origin = v_row.origin
and sub_set = set_id
and sub_provider = v_row.origin
and sub_receiver = v_row.receiver
and sub_active
and p.no_active
and p.no_id=sub_provider
)

then
delete from sl_listen

where li_origin = v_row.origin
and li_receiver = v_row.receiver;

insert into sl_listen (li_origin, li_provider, li_receiver)
values (v_row.origin, v_row.origin, v_row.receiver);

continue;
end if;

-- 2nd choice:
-- If we are subscribed to any set originating on this
-- event origin, we want to listen on all data providers
-- we use for this origin. We are a cascaded subscriber
-- for sets from this node.
if exists (select true from sl_set, sl_subscribe

where set_origin = v_row.origin
and sub_set = set_id
and sub_receiver = v_row.receiver
and sub_active)

then
delete from sl_listen

where li_origin = v_row.origin
and li_receiver = v_row.receiver;

insert into sl_listen (li_origin, li_provider, li_receiver)
select distinct set_origin, sub_provider, v_row.receiver

Slony-I 2.1.4 Documentation 227 / 263

from sl_set, sl_subscribe
where set_origin = v_row.origin
and sub_set = set_id
and sub_receiver = v_row.receiver
and sub_active;

continue;
end if;

end loop ;

return null ;
end ;

13.93 recreate_log_trigger(p_tab_attkind text, p_tab_id oid, p_fq_table_name text)

Function Properties
Language: PLPGSQL, Return Type: integer

A function that drops and recreates the log trigger on the specified table. It is intended to be used after the primary_key/unique
index has changed.

begin
execute ’drop trigger "_schemadoc_logtrigger" on ’ ||
p_fq_table_name ;
-- ----

execute ’create trigger "_schemadoc_logtrigger"’ ||
’ after insert or update or delete on ’ ||
p_fq_table_name
|| ’ for each row execute procedure logTrigger (’ ||

pg_catalog.quote_literal(’_schemadoc’) || ’,’ ||
pg_catalog.quote_literal(p_tab_id::text) || ’,’ ||
pg_catalog.quote_literal(p_tab_attkind) || ’);’;

return 0;
end

13.94 registernodeconnection(p_nodeid integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Register (uniquely) the node connection so that only one slon can service the node

begin
insert into sl_nodelock
(nl_nodeid, nl_backendpid)
values
(p_nodeid, pg_backend_pid());

return 0;
end;

Slony-I 2.1.4 Documentation 228 / 263

13.95 registry_get_int4(p_default text, p_key integer)

Function Properties
Language: PLPGSQL, Return Type: integer

registry_get_int4(key, value) Get a registry value. If not present, set and return the default.

DECLARE
v_value int4;

BEGIN
select reg_int4 into v_value from sl_registry

where reg_key = p_key;
if not found then
v_value = p_default;
if p_default notnull then

perform registry_set_int4(p_key, p_default);
end if;

else
if v_value is null then

raise exception ’Slony-I: registry key % is not an int4 value’,
p_key;

end if;
end if;
return v_value;

END;

13.96 registry_get_text(p_default text, p_key text)

Function Properties
Language: PLPGSQL, Return Type: text

registry_get_text(key, value) Get a registry value. If not present, set and return the default.

DECLARE
v_value text;

BEGIN
select reg_text into v_value from sl_registry

where reg_key = p_key;
if not found then
v_value = p_default;
if p_default notnull then

perform registry_set_text(p_key, p_default);
end if;

else
if v_value is null then

raise exception ’Slony-I: registry key % is not a text value’,
p_key;

end if;
end if;
return v_value;

END;

13.97 registry_get_timestamp(p_default text, p_key timestamp with time zone)

Function Properties
Language: PLPGSQL, Return Type: timestamp without time zone

registry_get_timestamp(key, value) Get a registry value. If not present, set and return the default.

Slony-I 2.1.4 Documentation 229 / 263

DECLARE
v_value timestamp;

BEGIN
select reg_timestamp into v_value from sl_registry

where reg_key = p_key;
if not found then
v_value = p_default;
if p_default notnull then

perform registry_set_timestamp(p_key, p_default);
end if;

else
if v_value is null then

raise exception ’Slony-I: registry key % is not an timestamp value’,
p_key;

end if;
end if;
return v_value;

END;

13.98 registry_set_int4(p_value text, p_key integer)

Function Properties
Language: PLPGSQL, Return Type: integer

registry_set_int4(key, value) Set or delete a registry value

BEGIN
if p_value is null then
delete from sl_registry

where reg_key = p_key;
else
lock table sl_registry;
update sl_registry

set reg_int4 = p_value
where reg_key = p_key;

if not found then
insert into sl_registry (reg_key, reg_int4)

values (p_key, p_value);
end if;

end if;
return p_value;

END;

13.99 registry_set_text(p_value text, p_key text)

Function Properties
Language: PLPGSQL, Return Type: text

registry_set_text(key, value) Set or delete a registry value

BEGIN
if p_value is null then
delete from sl_registry

where reg_key = p_key;
else
lock table sl_registry;
update sl_registry

Slony-I 2.1.4 Documentation 230 / 263

set reg_text = p_value
where reg_key = p_key;

if not found then
insert into sl_registry (reg_key, reg_text)

values (p_key, p_value);
end if;

end if;
return p_value;

END;

13.100 registry_set_timestamp(p_value text, p_key timestamp with time zone)

Function Properties
Language: PLPGSQL, Return Type: timestamp without time zone

registry_set_timestamp(key, value) Set or delete a registry value

BEGIN
if p_value is null then
delete from sl_registry

where reg_key = p_key;
else
lock table sl_registry;
update sl_registry

set reg_timestamp = p_value
where reg_key = p_key;

if not found then
insert into sl_registry (reg_key, reg_timestamp)

values (p_key, p_value);
end if;

end if;
return p_value;

END;

13.101 repair_log_triggers(only_locked boolean)

Function Properties
Language: PLPGSQL, Return Type: integer

repair the log triggers as required. If only_locked is true then only tables that are already exclusivly locked by the current
transaction are repaired. Otherwise all replicated tables with outdated trigger arguments are recreated.

declare
retval integer;
table_row record;

begin
retval=0;
for table_row in
select tab_nspname,tab_relname,

tab_idxname, tab_id, mode,
determineAttKindUnique(tab_nspname||
’.’||tab_relname,tab_idxname) as attkind

from
sl_table
left join
pg_locks on (relation=tab_reloid and pid=pg_backend_pid()
and mode=’AccessExclusiveLock’)

Slony-I 2.1.4 Documentation 231 / 263

,pg_trigger
where tab_reloid=tgrelid and
determineAttKindUnique(tab_nspname||’.’

||tab_relname,tab_idxname)
!=(decode_tgargs(tgargs))[2]
and tgname = ’_schemadoc’
|| ’_logtrigger’

LOOP
if (only_locked=false) or table_row.mode=’AccessExclusiveLock’ then

perform recreate_log_trigger
(table_row.tab_nspname||’.’||table_row.tab_relname,
table_row.tab_id,table_row.attkind);

retval=retval+1;
else

raise notice ’%.% has an invalid configuration on the log trigger. This was not ←↩
corrected because only_lock is true and the table is not locked.’,

table_row.tab_nspname,table_row.tab_relname;

end if;
end loop;

return retval;
end

13.102 replicate_partition(p_comment integer, p_idxname text, p_tabname text,
p_nspname text, p_tab_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

Add a partition table to replication. tab_idxname is optional - if NULL, then we use the primary key. This function looks up
replication configuration via the parent table. Note that this function is to be run within an EXECUTE SCRIPT script, so it runs
at the right place in the transaction stream on all nodes.

declare
prec record;
prec2 record;
v_set_id int4;

begin
-- Look up the parent table; fail if it does not exist

select c1.oid into prec from pg_catalog.pg_class c1, pg_catalog.pg_class c2, pg_catalog. ←↩
pg_inherits i, pg_catalog.pg_namespace n where c1.oid = i.inhparent and c2.oid = i. ←↩
inhrelid and n.oid = c2.relnamespace and n.nspname = p_nspname and c2.relname = ←↩
p_tabname;

if not found then
raise exception ’replicate_partition: No parent table found for %.%!’, p_nspname, ←↩

p_tabname;
end if;

-- The parent table tells us what replication set to use
select tab_set into prec2 from sl_table where tab_reloid = prec.oid;
if not found then

raise exception ’replicate_partition: Parent table % for new partition %.% is not ←↩
replicated!’, prec.oid, p_nspname, p_tabname;

end if;

v_set_id := prec2.tab_set;

-- Now, we have all the parameters necessary to run add_empty_table_to_replication...

Slony-I 2.1.4 Documentation 232 / 263

return add_empty_table_to_replication(v_set_id, p_tab_id, p_nspname, p_tabname, ←↩
p_idxname, p_comment);

end

13.103 resetsession()

Function Properties
Language: C, Return Type: text

_Slony_I_resetSession

13.104 reshapesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set
integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Run on a receiver/subscriber node when the provider for that subscription is being changed. Slonik will invoke this method
before the SUBSCRIBE_SET event propogates to the receiver so listen paths can be updated.

begin
update sl_subscribe set sub_provider=p_sub_provider

WHERE sub_set=p_sub_set AND sub_receiver=p_sub_receiver;
if found then

perform RebuildListenEntries();
notify "_schemadoc_Restart";

end if;
return 0;

end

13.105 seqtrack(p_seqval integer, p_seqid bigint)

Function Properties
Language: C, Return Type: bigint

Returns NULL if seqval has not changed since the last call for seqid

_Slony_I_seqtrack

13.106 sequencelastvalue(p_seqname text)

Function Properties
Language: PLPGSQL, Return Type: bigint

sequenceLastValue(p_seqname) Utility function used in sl_seqlastvalue view to compactly get the last value from the requested
sequence.

declare
v_seq_row record;

begin
for v_seq_row in execute ’select last_value from ’ || slon_quote_input(p_seqname)
loop

Slony-I 2.1.4 Documentation 233 / 263

return v_seq_row.last_value;
end loop;

-- not reached
end;

13.107 sequencesetvalue(p_last_value integer, p_ev_seqno integer, p_seq_origin
bigint, p_seq_id bigint)

Function Properties
Language: PLPGSQL, Return Type: integer

sequenceSetValue (seq_id, seq_origin, ev_seqno, last_value) Set sequence seq_id to have new value last_value.

declare
v_fqname text;

begin
-- ----
-- Get the sequences fully qualified name
-- ----
select slon_quote_brute(PGN.nspname) || ’.’ ||

slon_quote_brute(PGC.relname) into v_fqname
from sl_sequence SQ,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where SQ.seq_id = p_seq_id

and SQ.seq_reloid = PGC.oid
and PGC.relnamespace = PGN.oid;

if not found then
raise exception ’Slony-I: sequenceSetValue(): sequence % not found’, p_seq_id;

end if;

-- ----
-- Update it to the new value
-- ----
execute ’select setval(’’’ || v_fqname ||

’’’, ’ || p_last_value::text || ’)’;

insert into sl_seqlog
(seql_seqid, seql_origin, seql_ev_seqno, seql_last_value)
values (p_seq_id, p_seq_origin, p_ev_seqno, p_last_value);

return p_seq_id;
end;

13.108 setaddsequence(p_seq_comment integer, p_fqname integer, p_seq_id text,
p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

setAddSequence (set_id, seq_id, seq_fqname, seq_comment) On the origin node for set set_id, add sequence seq_fqname to the
replication set, and raise SET_ADD_SEQUENCE to cause this to replicate to subscriber nodes.

declare
v_set_origin int4;

begin

Slony-I 2.1.4 Documentation 234 / 263

-- ----
-- Check that we are the origin of the set
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id;

if not found then
raise exception ’Slony-I: setAddSequence(): set % not found’, p_set_id;

end if;
if v_set_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: setAddSequence(): set % has remote origin - submit to origin ←↩

node’, p_set_id;
end if;

if exists (select true from sl_subscribe
where sub_set = p_set_id)

then
raise exception ’Slony-I: cannot add sequence to currently subscribed set %’,

p_set_id;
end if;

-- ----
-- Add the sequence to the set and generate the SET_ADD_SEQUENCE event
-- ----
perform setAddSequence_int(p_set_id, p_seq_id, p_fqname,

p_seq_comment);
return createEvent(’_schemadoc’, ’SET_ADD_SEQUENCE’,

p_set_id::text, p_seq_id::text,
p_fqname::text, p_seq_comment::text);

end;

13.109 setaddsequence_int(p_seq_comment integer, p_fqname integer, p_seq_id
text, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: integer

setAddSequence_int (set_id, seq_id, seq_fqname, seq_comment) This processes the SET_ADD_SEQUENCE event. On remote
nodes that subscribe to set_id, add the sequence to the replication set.

declare
v_local_node_id int4;
v_set_origin int4;
v_sub_provider int4;
v_relkind char;
v_seq_reloid oid;
v_seq_relname name;
v_seq_nspname name;
v_sync_row record;

begin
-- ----
-- For sets with a remote origin, check that we are subscribed
-- to that set. Otherwise we ignore the sequence because it might
-- not even exist in our database.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id;

Slony-I 2.1.4 Documentation 235 / 263

if not found then
raise exception ’Slony-I: setAddSequence_int(): set % not found’,

p_set_id;
end if;
if v_set_origin != v_local_node_id then
select sub_provider into v_sub_provider

from sl_subscribe
where sub_set = p_set_id
and sub_receiver = getLocalNodeId(’_schemadoc’);

if not found then
return 0;

end if;
end if;

-- ----
-- Get the sequences OID and check that it is a sequence
-- ----
select PGC.oid, PGC.relkind, PGC.relname, PGN.nspname
into v_seq_reloid, v_relkind, v_seq_relname, v_seq_nspname

from "pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where PGC.relnamespace = PGN.oid
and slon_quote_input(p_fqname) = slon_quote_brute(PGN.nspname) ||

’.’ || slon_quote_brute(PGC.relname);
if not found then
raise exception ’Slony-I: setAddSequence_int(): sequence % not found’,

p_fqname;
end if;
if v_relkind != ’S’ then
raise exception ’Slony-I: setAddSequence_int(): % is not a sequence’,

p_fqname;
end if;

select 1 into v_sync_row from sl_sequence where seq_id = p_seq_id;
if not found then

v_relkind := ’o’; -- all is OK
else

raise exception ’Slony-I: setAddSequence_int(): sequence ID % has already ←↩
been assigned’, p_seq_id;

end if;

-- ----
-- Add the sequence to sl_sequence
-- ----
insert into sl_sequence
(seq_id, seq_reloid, seq_relname, seq_nspname, seq_set, seq_comment)
values
(p_seq_id, v_seq_reloid, v_seq_relname, v_seq_nspname, p_set_id, p_seq_comment);

-- ----
-- On the set origin, fake a sl_seqlog row for the last sync event
-- ----
if v_set_origin = v_local_node_id then
for v_sync_row in select coalesce (max(ev_seqno), 0) as ev_seqno

from sl_event
where ev_origin = v_local_node_id
and ev_type = ’SYNC’

loop
insert into sl_seqlog

(seql_seqid, seql_origin, seql_ev_seqno,
seql_last_value) values
(p_seq_id, v_local_node_id, v_sync_row.ev_seqno,
sequenceLastValue(p_fqname));

Slony-I 2.1.4 Documentation 236 / 263

end loop;
end if;

return p_seq_id;
end;

13.110 setaddtable(p_tab_comment integer, p_tab_idxname integer, p_fqname text,
p_tab_id name, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

setAddTable (set_id, tab_id, tab_fqname, tab_idxname, tab_comment) Add table tab_fqname to replication set on origin node,
and generate SET_ADD_TABLE event to allow this to propagate to other nodes. Note that the table id, tab_id, must be unique
ACROSS ALL SETS.

declare
v_set_origin int4;

begin
-- ----
-- Check that we are the origin of the set
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id;

if not found then
raise exception ’Slony-I: setAddTable(): set % not found’, p_set_id;

end if;
if v_set_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: setAddTable(): set % has remote origin’, p_set_id;

end if;

if exists (select true from sl_subscribe
where sub_set = p_set_id)

then
raise exception ’Slony-I: cannot add table to currently subscribed set % - must attach ←↩

to an unsubscribed set’,
p_set_id;

end if;

-- ----
-- Add the table to the set and generate the SET_ADD_TABLE event
-- ----
perform setAddTable_int(p_set_id, p_tab_id, p_fqname,

p_tab_idxname, p_tab_comment);
return createEvent(’_schemadoc’, ’SET_ADD_TABLE’,

p_set_id::text, p_tab_id::text, p_fqname::text,
p_tab_idxname::text, p_tab_comment::text);

end;

13.111 setaddtable_int(p_tab_comment integer, p_tab_idxname integer, p_fqname
text, p_tab_id name, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: integer

Slony-I 2.1.4 Documentation 237 / 263

setAddTable_int (set_id, tab_id, tab_fqname, tab_idxname, tab_comment) This function processes the SET_ADD_TABLE event
on remote nodes, adding a table to replication if the remote node is subscribing to its replication set.

declare
v_tab_relname name;
v_tab_nspname name;
v_local_node_id int4;
v_set_origin int4;
v_sub_provider int4;
v_relkind char;
v_tab_reloid oid;
v_pkcand_nn boolean;
v_prec record;

begin
-- ----
-- For sets with a remote origin, check that we are subscribed
-- to that set. Otherwise we ignore the table because it might
-- not even exist in our database.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id;

if not found then
raise exception ’Slony-I: setAddTable_int(): set % not found’,

p_set_id;
end if;
if v_set_origin != v_local_node_id then
select sub_provider into v_sub_provider

from sl_subscribe
where sub_set = p_set_id
and sub_receiver = getLocalNodeId(’_schemadoc’);

if not found then
return 0;

end if;
end if;

-- ----
-- Get the tables OID and check that it is a real table
-- ----
select PGC.oid, PGC.relkind, PGC.relname, PGN.nspname into v_tab_reloid, v_relkind, ←↩

v_tab_relname, v_tab_nspname
from "pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where PGC.relnamespace = PGN.oid
and slon_quote_input(p_fqname) = slon_quote_brute(PGN.nspname) ||

’.’ || slon_quote_brute(PGC.relname);
if not found then
raise exception ’Slony-I: setAddTable_int(): table % not found’,

p_fqname;
end if;
if v_relkind != ’r’ then
raise exception ’Slony-I: setAddTable_int(): % is not a regular table’,

p_fqname;
end if;

if not exists (select indexrelid
from "pg_catalog".pg_index PGX, "pg_catalog".pg_class PGC
where PGX.indrelid = v_tab_reloid

and PGX.indexrelid = PGC.oid
and PGC.relname = p_tab_idxname)

then
raise exception ’Slony-I: setAddTable_int(): table % has no index %’,

Slony-I 2.1.4 Documentation 238 / 263

p_fqname, p_tab_idxname;
end if;

-- ----
-- Verify that the columns in the PK (or candidate) are not NULLABLE
-- ----

v_pkcand_nn := ’f’;
for v_prec in select attname from "pg_catalog".pg_attribute where attrelid =

(select oid from "pg_catalog".pg_class where oid = v_tab_reloid)
and attname in (select attname from "pg_catalog".pg_attribute where

attrelid = (select oid from "pg_catalog".pg_class PGC,
"pg_catalog".pg_index PGX where
PGC.relname = p_tab_idxname and PGX.indexrelid=PGC.oid ←↩

and
PGX.indrelid = v_tab_reloid)) and attnotnull <> ’t’

loop
raise notice ’Slony-I: setAddTable_int: table % PK column % nullable’, p_fqname, v_prec ←↩

.attname;
v_pkcand_nn := ’t’;

end loop;
if v_pkcand_nn then
raise exception ’Slony-I: setAddTable_int: table % not replicable!’, p_fqname;

end if;

select * into v_prec from sl_table where tab_id = p_tab_id;
if not found then
v_pkcand_nn := ’t’; -- No-op -- All is well

else
raise exception ’Slony-I: setAddTable_int: table id % has already been assigned!’, ←↩

p_tab_id;
end if;

-- ----
-- Add the table to sl_table and create the trigger on it.
-- ----
insert into sl_table

(tab_id, tab_reloid, tab_relname, tab_nspname,
tab_set, tab_idxname, tab_altered, tab_comment)
values
(p_tab_id, v_tab_reloid, v_tab_relname, v_tab_nspname,
p_set_id, p_tab_idxname, false, p_tab_comment);

perform alterTableAddTriggers(p_tab_id);

return p_tab_id;
end;

13.112 setdropsequence(p_seq_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

setDropSequence (seq_id) On the origin node for the set, drop sequence seq_id from replication set, and raise SET_DROP_SEQUENCE
to cause this to replicate to subscriber nodes.

declare
v_set_id int4;
v_set_origin int4;

begin
-- ----

Slony-I 2.1.4 Documentation 239 / 263

-- Determine set id for this sequence
-- ----
select seq_set into v_set_id from sl_sequence where seq_id = p_seq_id;

-- ----
-- Ensure sequence exists
-- ----
if not found then
raise exception ’Slony-I: setDropSequence_int(): sequence % not found’,

p_seq_id;
end if;

-- ----
-- Check that we are the origin of the set
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = v_set_id;

if not found then
raise exception ’Slony-I: setDropSequence(): set % not found’, v_set_id;

end if;
if v_set_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: setDropSequence(): set % has origin at another node - submit ←↩

this to that node’, v_set_id;
end if;

-- ----
-- Add the sequence to the set and generate the SET_ADD_SEQUENCE event
-- ----
perform setDropSequence_int(p_seq_id);
return createEvent(’_schemadoc’, ’SET_DROP_SEQUENCE’,

p_seq_id::text);
end;

13.113 setdropsequence_int(p_seq_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

setDropSequence_int (seq_id) This processes the SET_DROP_SEQUENCE event. On remote nodes that subscribe to the set
containing sequence seq_id, drop the sequence from the replication set.

declare
v_set_id int4;
v_local_node_id int4;
v_set_origin int4;
v_sub_provider int4;
v_relkind char;
v_sync_row record;

begin
-- ----
-- Determine set id for this sequence
-- ----
select seq_set into v_set_id from sl_sequence where seq_id = p_seq_id;

-- ----
-- Ensure sequence exists
-- ----
if not found then
return 0;

Slony-I 2.1.4 Documentation 240 / 263

end if;

-- ----
-- For sets with a remote origin, check that we are subscribed
-- to that set. Otherwise we ignore the sequence because it might
-- not even exist in our database.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = v_set_id;

if not found then
raise exception ’Slony-I: setDropSequence_int(): set % not found’,

v_set_id;
end if;
if v_set_origin != v_local_node_id then
select sub_provider into v_sub_provider

from sl_subscribe
where sub_set = v_set_id
and sub_receiver = getLocalNodeId(’_schemadoc’);

if not found then
return 0;

end if;
end if;

-- ----
-- drop the sequence from sl_sequence, sl_seqlog
-- ----
delete from sl_seqlog where seql_seqid = p_seq_id;
delete from sl_sequence where seq_id = p_seq_id;

return p_seq_id;
end;

13.114 setdroptable(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

setDropTable (tab_id) Drop table tab_id from set on origin node, and generate SET_DROP_TABLE event to allow this to prop-
agate to other nodes.

declare
v_set_id int4;
v_set_origin int4;

begin
-- ----

-- Determine the set_id
-- ----

select tab_set into v_set_id from sl_table where tab_id = p_tab_id;

-- ----
-- Ensure table exists
-- ----
if not found then
raise exception ’Slony-I: setDropTable_int(): table % not found’,

p_tab_id;
end if;

-- ----

Slony-I 2.1.4 Documentation 241 / 263

-- Check that we are the origin of the set
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = v_set_id;

if not found then
raise exception ’Slony-I: setDropTable(): set % not found’, v_set_id;

end if;
if v_set_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: setDropTable(): set % has remote origin’, v_set_id;

end if;

-- ----
-- Drop the table from the set and generate the SET_ADD_TABLE event
-- ----
perform setDropTable_int(p_tab_id);
return createEvent(’_schemadoc’, ’SET_DROP_TABLE’,

p_tab_id::text);
end;

13.115 setdroptable_int(p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

setDropTable_int (tab_id) This function processes the SET_DROP_TABLE event on remote nodes, dropping a table from repli-
cation if the remote node is subscribing to its replication set.

declare
v_set_id int4;
v_local_node_id int4;
v_set_origin int4;
v_sub_provider int4;
v_tab_reloid oid;

begin
-- ----

-- Determine the set_id
-- ----

select tab_set into v_set_id from sl_table where tab_id = p_tab_id;

-- ----
-- Ensure table exists
-- ----
if not found then
return 0;

end if;

-- ----
-- For sets with a remote origin, check that we are subscribed
-- to that set. Otherwise we ignore the table because it might
-- not even exist in our database.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = v_set_id;

if not found then
raise exception ’Slony-I: setDropTable_int(): set % not found’,

v_set_id;
end if;

Slony-I 2.1.4 Documentation 242 / 263

if v_set_origin != v_local_node_id then
select sub_provider into v_sub_provider

from sl_subscribe
where sub_set = v_set_id
and sub_receiver = getLocalNodeId(’_schemadoc’);

if not found then
return 0;

end if;
end if;

-- ----
-- Drop the table from sl_table and drop trigger from it.
-- ----
perform alterTableDropTriggers(p_tab_id);
delete from sl_table where tab_id = p_tab_id;
return p_tab_id;

end;

13.116 setmovesequence(p_new_set_id integer, p_seq_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

setMoveSequence(p_seq_id, p_new_set_id) - This generates the SET_MOVE_SEQUENCE event, after validation, notably that
both sets exist, are distinct, and have exactly the same subscription lists

declare
v_old_set_id int4;
v_origin int4;

begin
-- ----
-- Get the sequences current set
-- ----
select seq_set into v_old_set_id from sl_sequence

where seq_id = p_seq_id;
if not found then
raise exception ’Slony-I: setMoveSequence(): sequence %d not found’, p_seq_id;

end if;

-- ----
-- Check that both sets exist and originate here
-- ----
if p_new_set_id = v_old_set_id then
raise exception ’Slony-I: setMoveSequence(): set ids cannot be identical’;

end if;
select set_origin into v_origin from sl_set

where set_id = p_new_set_id;
if not found then
raise exception ’Slony-I: setMoveSequence(): set % not found’, p_new_set_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: setMoveSequence(): set % does not originate on local node’,

p_new_set_id;
end if;

select set_origin into v_origin from sl_set
where set_id = v_old_set_id;

if not found then
raise exception ’Slony-I: set % not found’, v_old_set_id;

end if;

Slony-I 2.1.4 Documentation 243 / 263

if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

v_old_set_id;
end if;

-- ----
-- Check that both sets are subscribed by the same set of nodes
-- ----
if exists (select true from sl_subscribe SUB1

where SUB1.sub_set = p_new_set_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

from sl_subscribe SUB2
where SUB2.sub_set = v_old_set_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

p_new_set_id, v_old_set_id;
end if;

if exists (select true from sl_subscribe SUB1
where SUB1.sub_set = v_old_set_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

from sl_subscribe SUB2
where SUB2.sub_set = p_new_set_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

v_old_set_id, p_new_set_id;
end if;

-- ----
-- Change the set the sequence belongs to
-- ----
perform setMoveSequence_int(p_seq_id, p_new_set_id);
return createEvent(’_schemadoc’, ’SET_MOVE_SEQUENCE’,

p_seq_id::text, p_new_set_id::text);
end;

13.117 setmovesequence_int(p_new_set_id integer, p_seq_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

setMoveSequence_int(p_seq_id, p_new_set_id) - processes the SET_MOVE_SEQUENCE event, moving a sequence to another
replication set.

begin
-- ----
-- Move the sequence to the new set
-- ----
update sl_sequence

set seq_set = p_new_set_id
where seq_id = p_seq_id;

return p_seq_id;
end;

Slony-I 2.1.4 Documentation 244 / 263

13.118 setmovetable(p_new_set_id integer, p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

This processes the SET_MOVE_TABLE event. The table is moved to the destination set.

declare
v_old_set_id int4;
v_origin int4;

begin
-- ----
-- Get the tables current set
-- ----
select tab_set into v_old_set_id from sl_table

where tab_id = p_tab_id;
if not found then
raise exception ’Slony-I: table %d not found’, p_tab_id;

end if;

-- ----
-- Check that both sets exist and originate here
-- ----
if p_new_set_id = v_old_set_id then
raise exception ’Slony-I: set ids cannot be identical’;

end if;
select set_origin into v_origin from sl_set

where set_id = p_new_set_id;
if not found then
raise exception ’Slony-I: set % not found’, p_new_set_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

p_new_set_id;
end if;

select set_origin into v_origin from sl_set
where set_id = v_old_set_id;

if not found then
raise exception ’Slony-I: set % not found’, v_old_set_id;

end if;
if v_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: set % does not originate on local node’,

v_old_set_id;
end if;

-- ----
-- Check that both sets are subscribed by the same set of nodes
-- ----
if exists (select true from sl_subscribe SUB1

where SUB1.sub_set = p_new_set_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

from sl_subscribe SUB2
where SUB2.sub_set = v_old_set_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

p_new_set_id, v_old_set_id;
end if;

if exists (select true from sl_subscribe SUB1
where SUB1.sub_set = v_old_set_id
and SUB1.sub_receiver not in (select SUB2.sub_receiver

Slony-I 2.1.4 Documentation 245 / 263

from sl_subscribe SUB2
where SUB2.sub_set = p_new_set_id))

then
raise exception ’Slony-I: subscriber lists of set % and % are different’,

v_old_set_id, p_new_set_id;
end if;

-- ----
-- Change the set the table belongs to
-- ----
perform createEvent(’_schemadoc’, ’SYNC’, NULL);
perform setMoveTable_int(p_tab_id, p_new_set_id);
return createEvent(’_schemadoc’, ’SET_MOVE_TABLE’,

p_tab_id::text, p_new_set_id::text);
end;

13.119 setmovetable_int(p_new_set_id integer, p_tab_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

begin
-- ----
-- Move the table to the new set
-- ----
update sl_table

set tab_set = p_new_set_id
where tab_id = p_tab_id;

return p_tab_id;
end;

13.120 slon_node_health_check()

Function Properties
Language: PLPGSQL, Return Type: boolean

called when slon starts up to validate that there are not problems with node configuration. Returns t if all is OK, f if there is a
problem.

declare
prec record;
all_ok boolean;

begin
all_ok := ’t’::boolean;
-- validate that all tables in sl_table have:
-- sl_table agreeing with pg_class
for prec in select tab_id, tab_relname, tab_nspname from
sl_table t where not exists (select 1 from pg_catalog.pg_class c, pg_catalog. ←↩

pg_namespace n
where c.oid = t.tab_reloid and c.relname = t.tab_relname and c.relnamespace = n.oid ←↩

and n.nspname = t.tab_nspname) loop
all_ok := ’f’::boolean;
raise warning ’table [id,nsp,name]=[%,%,%] - sl_table does not match pg_class/ ←↩

pg_namespace’, prec.tab_id, prec.tab_relname, prec.tab_nspname;
end loop;
if not all_ok then

Slony-I 2.1.4 Documentation 246 / 263

raise warning ’Mismatch found between sl_table and pg_class. Slonik command REPAIR ←↩
CONFIG may be useful to rectify this.’;

end if;
return all_ok;

end

13.121 slon_quote_brute(p_tab_fqname text)

Function Properties
Language: PLPGSQL, Return Type: text

Brutally quote the given text

declare
v_fqname text default ’’;

begin
v_fqname := ’"’ || replace(p_tab_fqname,’"’,’""’) || ’"’;
return v_fqname;

end;

13.122 slon_quote_input(p_tab_fqname text)

Function Properties
Language: PLPGSQL, Return Type: text

quote all words that aren[apos]t quoted yet

declare
v_nsp_name text;
v_tab_name text;

v_i integer;
v_l integer;
v_pq2 integer;

begin
v_l := length(p_tab_fqname);

-- Let us search for the dot
if p_tab_fqname like ’"%’ then
-- if the first part of the ident starts with a double quote, search
-- for the closing double quote, skipping over double double quotes.
v_i := 2;
while v_i <= v_l loop

if substr(p_tab_fqname, v_i, 1) != ’"’ then
v_i := v_i + 1;

else
v_i := v_i + 1;
if substr(p_tab_fqname, v_i, 1) != ’"’ then
exit;

end if;
v_i := v_i + 1;

end if;
end loop;

else
-- first part of ident is not quoted, search for the dot directly
v_i := 1;
while v_i <= v_l loop

if substr(p_tab_fqname, v_i, 1) = ’.’ then

Slony-I 2.1.4 Documentation 247 / 263

exit;
end if;
v_i := v_i + 1;

end loop;
end if;

-- v_i now points at the dot or behind the string.

if substr(p_tab_fqname, v_i, 1) = ’.’ then
-- There is a dot now, so split the ident into its namespace
-- and objname parts and make sure each is quoted
v_nsp_name := substr(p_tab_fqname, 1, v_i - 1);
v_tab_name := substr(p_tab_fqname, v_i + 1);
if v_nsp_name not like ’"%’ then

v_nsp_name := ’"’ || replace(v_nsp_name, ’"’, ’""’) ||
’"’;

end if;
if v_tab_name not like ’"%’ then

v_tab_name := ’"’ || replace(v_tab_name, ’"’, ’""’) ||
’"’;

end if;

return v_nsp_name || ’.’ || v_tab_name;
else
-- No dot ... must be just an ident without schema
if p_tab_fqname like ’"%’ then

return p_tab_fqname;
else

return ’"’ || replace(p_tab_fqname, ’"’, ’""’) || ’"’;
end if;

end if;

end;

13.123 slonyversion()

Function Properties
Language: PLPGSQL, Return Type: text

Returns the version number of the slony schema

begin
return slonyVersionMajor()::text || ’.’ ||

slonyVersionMinor()::text || ’.’ ||
slonyVersionPatchlevel()::text ;

end;

13.124 slonyversionmajor()

Function Properties
Language: PLPGSQL, Return Type: integer

Returns the major version number of the slony schema

begin
return 2;

end;

Slony-I 2.1.4 Documentation 248 / 263

13.125 slonyversionminor()

Function Properties
Language: PLPGSQL, Return Type: integer

Returns the minor version number of the slony schema

begin
return 1;

end;

13.126 slonyversionpatchlevel()

Function Properties
Language: PLPGSQL, Return Type: integer

Returns the version patch level of the slony schema

begin
return 4;

end;

13.127 store_application_name(i_name text)

Function Properties
Language: PLPGSQL, Return Type: text

Set application_name GUC, if possible. Returns NULL if it fails to work.

declare
p_command text;

begin
if exists (select 1 from pg_catalog.pg_settings where name = ’application_name’) then

p_command := ’set application_name to ’’’|| i_name || ’’’;’;
execute p_command;
return i_name;

end if;
return NULL::text;

end

13.128 storelisten(p_receiver integer, p_provider integer, p_origin integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

FUNCTION storeListen (li_origin, li_provider, li_receiver) generate STORE_LISTEN event, indicating that receiver node li_receiver
listens to node li_provider in order to get messages coming from node li_origin.

begin
perform storeListen_int (p_origin, p_provider, p_receiver);
return createEvent (’_schemadoc’, ’STORE_LISTEN’,

p_origin::text, p_provider::text, p_receiver::text);
end;

Slony-I 2.1.4 Documentation 249 / 263

13.129 storelisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin inte-
ger)

Function Properties
Language: PLPGSQL, Return Type: integer

FUNCTION storeListen_int (li_origin, li_provider, li_receiver) Process STORE_LISTEN event, indicating that receiver node
li_receiver listens to node li_provider in order to get messages coming from node li_origin.

declare
v_exists int4;

begin
select 1 into v_exists

from sl_listen
where li_origin = p_li_origin
and li_provider = p_li_provider
and li_receiver = p_li_receiver;

if not found then
-- ----
-- In case we receive STORE_LISTEN events before we know
-- about the nodes involved in this, we generate those nodes
-- as pending.
-- ----
if not exists (select 1 from sl_node

where no_id = p_li_origin) then
perform storeNode_int (p_li_origin, ’<event pending>’);

end if;
if not exists (select 1 from sl_node

where no_id = p_li_provider) then
perform storeNode_int (p_li_provider, ’<event pending>’);

end if;
if not exists (select 1 from sl_node

where no_id = p_li_receiver) then
perform storeNode_int (p_li_receiver, ’<event pending>’);

end if;

insert into sl_listen
(li_origin, li_provider, li_receiver) values
(p_li_origin, p_li_provider, p_li_receiver);

end if;

return 0;
end;

13.130 storenode(p_no_comment integer, p_no_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

no_id - Node ID # no_comment - Human-oriented comment Generate the STORE_NODE event for node no_id

begin
perform storeNode_int (p_no_id, p_no_comment);
return createEvent(’_schemadoc’, ’STORE_NODE’,

p_no_id::text, p_no_comment::text);
end;

Slony-I 2.1.4 Documentation 250 / 263

13.131 storenode_int(p_no_comment integer, p_no_id text)

Function Properties
Language: PLPGSQL, Return Type: integer

no_id - Node ID # no_comment - Human-oriented comment Internal function to process the STORE_NODE event for node
no_id

declare
v_old_row record;

begin
-- ----
-- Check if the node exists
-- ----
select * into v_old_row

from sl_node
where no_id = p_no_id
for update;

if found then
-- ----
-- Node exists, update the existing row.
-- ----
update sl_node

set no_comment = p_no_comment
where no_id = p_no_id;

else
-- ----
-- New node, insert the sl_node row
-- ----
insert into sl_node

(no_id, no_active, no_comment) values
(p_no_id, ’f’, p_no_comment);

end if;

return p_no_id;
end;

13.132 storepath(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text,
p_pa_server integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

FUNCTION storePath (pa_server, pa_client, pa_conninfo, pa_connretry) Generate the STORE_PATH event indicating that node
pa_client can access node pa_server using DSN pa_conninfo

begin
perform storePath_int(p_pa_server, p_pa_client,

p_pa_conninfo, p_pa_connretry);
return createEvent(’_schemadoc’, ’STORE_PATH’,

p_pa_server::text, p_pa_client::text,
p_pa_conninfo::text, p_pa_connretry::text);

end;

Slony-I 2.1.4 Documentation 251 / 263

13.133 storepath_int(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client
text, p_pa_server integer)

Function Properties
Language: PLPGSQL, Return Type: integer

FUNCTION storePath (pa_server, pa_client, pa_conninfo, pa_connretry) Process the STORE_PATH event indicating that node
pa_client can access node pa_server using DSN pa_conninfo

declare
v_dummy int4;

begin
-- ----
-- Check if the path already exists
-- ----
select 1 into v_dummy

from sl_path
where pa_server = p_pa_server
and pa_client = p_pa_client
for update;

if found then
-- ----
-- Path exists, update pa_conninfo
-- ----
update sl_path

set pa_conninfo = p_pa_conninfo,
pa_connretry = p_pa_connretry

where pa_server = p_pa_server
and pa_client = p_pa_client;

else
-- ----
-- New path
--
-- In case we receive STORE_PATH events before we know
-- about the nodes involved in this, we generate those nodes
-- as pending.
-- ----
if not exists (select 1 from sl_node

where no_id = p_pa_server) then
perform storeNode_int (p_pa_server, ’<event pending>’);

end if;
if not exists (select 1 from sl_node

where no_id = p_pa_client) then
perform storeNode_int (p_pa_client, ’<event pending>’);

end if;
insert into sl_path

(pa_server, pa_client, pa_conninfo, pa_connretry) values
(p_pa_server, p_pa_client, p_pa_conninfo, p_pa_connretry);

end if;

-- Rewrite sl_listen table
perform RebuildListenEntries();

return 0;
end;

Slony-I 2.1.4 Documentation 252 / 263

13.134 storeset(p_set_comment integer, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: bigint

Generate STORE_SET event for set set_id with human readable comment set_comment

declare
v_local_node_id int4;

begin
v_local_node_id := getLocalNodeId(’_schemadoc’);

insert into sl_set
(set_id, set_origin, set_comment) values
(p_set_id, v_local_node_id, p_set_comment);

return createEvent(’_schemadoc’, ’STORE_SET’,
p_set_id::text, v_local_node_id::text, p_set_comment::text);

end;

13.135 storeset_int(p_set_comment integer, p_set_origin integer, p_set_id text)

Function Properties
Language: PLPGSQL, Return Type: integer

storeSet_int (set_id, set_origin, set_comment) Process the STORE_SET event, indicating the new set with given ID, origin node,
and human readable comment.

declare
v_dummy int4;

begin
select 1 into v_dummy

from sl_set
where set_id = p_set_id
for update;

if found then
update sl_set

set set_comment = p_set_comment
where set_id = p_set_id;

else
if not exists (select 1 from sl_node

where no_id = p_set_origin) then
perform storeNode_int (p_set_origin, ’<event pending>’);

end if;
insert into sl_set

(set_id, set_origin, set_comment) values
(p_set_id, p_set_origin, p_set_comment);

end if;

-- Run addPartialLogIndices() to try to add indices to unused sl_log_? table
perform addPartialLogIndices();

return p_set_id;
end;

Slony-I 2.1.4 Documentation 253 / 263

13.136 subscribeset(p_omit_copy integer, p_sub_forward integer, p_sub_receiver
integer, p_sub_provider boolean, p_sub_set boolean)

Function Properties
Language: PLPGSQL, Return Type: bigint

subscribeSet (sub_set, sub_provider, sub_receiver, sub_forward, omit_copy) Makes sure that the receiver is not the provider, then
stores the subscription, and publishes the SUBSCRIBE_SET event to other nodes. If omit_copy is true, then no data copy will
be done.

declare
v_set_origin int4;
v_ev_seqno int8;
v_rec record;

begin
--
-- Check that the receiver exists
--
if not exists (select no_id from sl_node where no_id=

p_sub_receiver) then
raise exception ’Slony-I: subscribeSet() receiver % does not exist’ , ←↩

p_sub_receiver;
end if;

--
-- Check that the provider exists
--
if not exists (select no_id from sl_node where no_id=

p_sub_provider) then
raise exception ’Slony-I: subscribeSet() provider % does not exist’ , ←↩

p_sub_provider;
end if;

-- ----
-- Check that the origin and provider of the set are remote
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = p_sub_set;

if not found then
raise exception ’Slony-I: subscribeSet(): set % not found’, p_sub_set;

end if;
if v_set_origin = p_sub_receiver then
raise exception

’Slony-I: subscribeSet(): set origin and receiver cannot be identical’;
end if;
if p_sub_receiver = p_sub_provider then
raise exception

’Slony-I: subscribeSet(): set provider and receiver cannot be identical’;
end if;
-- ----
-- Check that this is called on the origin node
-- ----
if v_set_origin != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: subscribeSet() must be called on origin’;

end if;

-- ---
-- Verify that the provider is either the origin or an active subscriber
-- Bug report #1362
-- ---

Slony-I 2.1.4 Documentation 254 / 263

if v_set_origin <> p_sub_provider then
if not exists (select 1 from sl_subscribe

where sub_set = p_sub_set and
sub_receiver = p_sub_provider and

sub_forward and sub_active) then
raise exception ’Slony-I: subscribeSet(): provider % is not an active forwarding node ←↩

for replication set %’, p_sub_provider, p_sub_set;
end if;

end if;

-- ----
-- Create the SUBSCRIBE_SET event
-- ----
v_ev_seqno := createEvent(’_schemadoc’, ’SUBSCRIBE_SET’,

p_sub_set::text, p_sub_provider::text, p_sub_receiver::text,
case p_sub_forward when true then ’t’ else ’f’ end,
case p_omit_copy when true then ’t’ else ’f’ end

);

-- ----
-- Call the internal procedure to store the subscription
-- ----
perform subscribeSet_int(p_sub_set, p_sub_provider,

p_sub_receiver, p_sub_forward, p_omit_copy);

return v_ev_seqno;
end;

13.137 subscribeset_int(p_omit_copy integer, p_sub_forward integer, p_sub_receiver
integer, p_sub_provider boolean, p_sub_set boolean)

Function Properties
Language: PLPGSQL, Return Type: integer

subscribeSet_int (sub_set, sub_provider, sub_receiver, sub_forward, omit_copy) Internal actions for subscribing receiver sub_receiver
to subscription set sub_set.

declare
v_set_origin int4;
v_sub_row record;

begin
-- ----
-- Provider change is only allowed for active sets
-- ----
if p_sub_receiver = getLocalNodeId(’_schemadoc’) then
select sub_active into v_sub_row from sl_subscribe

where sub_set = p_sub_set
and sub_receiver = p_sub_receiver;

if found then
if not v_sub_row.sub_active then

raise exception ’Slony-I: subscribeSet_int(): set % is not active, cannot change ←↩
provider’,
p_sub_set;

end if;
end if;

end if;

-- ----
-- Try to change provider and/or forward for an existing subscription

Slony-I 2.1.4 Documentation 255 / 263

-- ----
update sl_subscribe

set sub_provider = p_sub_provider,
sub_forward = p_sub_forward

where sub_set = p_sub_set
and sub_receiver = p_sub_receiver;

if found then
-- ----
-- Rewrite sl_listen table
-- ----
perform RebuildListenEntries();

return p_sub_set;
end if;

-- ----
-- Not found, insert a new one
-- ----
if not exists (select true from sl_path

where pa_server = p_sub_provider
and pa_client = p_sub_receiver)

then
insert into sl_path

(pa_server, pa_client, pa_conninfo, pa_connretry)
values
(p_sub_provider, p_sub_receiver,
’<event pending>’, 10);

end if;
insert into sl_subscribe

(sub_set, sub_provider, sub_receiver, sub_forward, sub_active)
values (p_sub_set, p_sub_provider, p_sub_receiver,

p_sub_forward, false);

-- ----
-- If the set origin is here, then enable the subscription
-- ----
select set_origin into v_set_origin

from sl_set
where set_id = p_sub_set;

if not found then
raise exception ’Slony-I: subscribeSet_int(): set % not found’, p_sub_set;

end if;

if v_set_origin = getLocalNodeId(’_schemadoc’) then
perform createEvent(’_schemadoc’, ’ENABLE_SUBSCRIPTION’,

p_sub_set::text, p_sub_provider::text, p_sub_receiver::text,
case p_sub_forward when true then ’t’ else ’f’ end,
case p_omit_copy when true then ’t’ else ’f’ end
);

perform enableSubscription(p_sub_set,
p_sub_provider, p_sub_receiver);

end if;

-- ----
-- Rewrite sl_listen table
-- ----
perform RebuildListenEntries();

return p_sub_set;
end;

Slony-I 2.1.4 Documentation 256 / 263

13.138 tablestovacuum()

Function Properties
Language: PLPGSQL, Return Type: SET OF vactables

Return a list of tables that require frequent vacuuming. The function is used so that the list is not hardcoded into C code.

declare
prec vactables%rowtype;

begin
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_event’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_confirm’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_setsync’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_seqlog’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_archive_counter’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’_schemadoc’;
prec.relname := ’sl_components’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’pg_catalog’;
prec.relname := ’pg_listener’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;
prec.nspname := ’pg_catalog’;
prec.relname := ’pg_statistic’;
if ShouldSlonyVacuumTable(prec.nspname, prec.relname) then
return next prec;

end if;

return;
end

13.139 terminatenodeconnections(p_failed_node integer)

Function Properties
Language: PLPGSQL, Return Type: integer

terminates all backends that have registered to be from the given node

Slony-I 2.1.4 Documentation 257 / 263

declare
v_row record;

begin
for v_row in select nl_nodeid, nl_conncnt,

nl_backendpid from sl_nodelock
where nl_nodeid = p_failed_node for update

loop
perform killBackend(v_row.nl_backendpid, ’TERM’);
delete from sl_nodelock

where nl_nodeid = v_row.nl_nodeid
and nl_conncnt = v_row.nl_conncnt;

end loop;

return 0;
end;

13.140 uninstallnode()

Function Properties
Language: PLPGSQL, Return Type: integer

Reset the whole database to standalone by removing the whole replication system.

declare
v_tab_row record;

begin
raise notice ’Slony-I: Please drop schema "_schemadoc"’;
return 0;

end;

13.141 unlockset(p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

Remove the special trigger from all tables of a set that disables access to it.

declare
v_local_node_id int4;
v_set_row record;
v_tab_row record;

begin
-- ----
-- Check that the set exists and that we are the origin
-- and that it is not already locked.
-- ----
v_local_node_id := getLocalNodeId(’_schemadoc’);
select * into v_set_row from sl_set

where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_row.set_origin <> v_local_node_id then
raise exception ’Slony-I: set % does not originate on local node’,

p_set_id;
end if;

Slony-I 2.1.4 Documentation 258 / 263

if v_set_row.set_locked isnull then
raise exception ’Slony-I: set % is not locked’, p_set_id;

end if;

-- ----
-- Drop the lockedSet trigger from all tables in the set.
-- ----
for v_tab_row in select T.tab_id,

slon_quote_brute(PGN.nspname) || ’.’ ||
slon_quote_brute(PGC.relname) as tab_fqname
from sl_table T,

"pg_catalog".pg_class PGC, "pg_catalog".pg_namespace PGN
where T.tab_set = p_set_id

and T.tab_reloid = PGC.oid
and PGC.relnamespace = PGN.oid

order by tab_id
loop
execute ’drop trigger "_schemadoc_lockedset" ’ ||

’on ’ || v_tab_row.tab_fqname;
end loop;

-- ----
-- Clear out the set_locked field
-- ----
update sl_set

set set_locked = NULL
where set_id = p_set_id;

return p_set_id;
end;

13.142 unsubscribeset(p_sub_receiver integer, p_sub_set integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

unsubscribeSet (sub_set, sub_receiver) Unsubscribe node sub_receiver from subscription set sub_set. This is invoked on the
receiver node. It verifies that this does not break any chains (e.g. - where sub_receiver is a provider for another node), then restores
tables, drops Slony-specific keys, drops table entries for the set, drops the subscription, and generates an UNSUBSCRIBE_SET
node to publish that the node is being dropped.

declare
v_tab_row record;

begin
-- ----
-- Check that this is called on the receiver node
-- ----
if p_sub_receiver != getLocalNodeId(’_schemadoc’) then
raise exception ’Slony-I: unsubscribeSet() must be called on receiver’;

end if;

-- ----
-- Check that this does not break any chains
-- ----
if exists (select true from sl_subscribe

where sub_set = p_sub_set
and sub_provider = p_sub_receiver)

then
raise exception ’Slony-I: Cannot unsubscribe set % while being provider’,

Slony-I 2.1.4 Documentation 259 / 263

p_sub_set;
end if;

-- ----
-- Remove the replication triggers.
-- ----
for v_tab_row in select tab_id from sl_table

where tab_set = p_sub_set
order by tab_id

loop
perform alterTableDropTriggers(v_tab_row.tab_id);

end loop;

-- ----
-- Remove the setsync status. This will also cause the
-- worker thread to ignore the set and stop replicating
-- right now.
-- ----
delete from sl_setsync

where ssy_setid = p_sub_set;

-- ----
-- Remove all sl_table and sl_sequence entries for this set.
-- Should we ever subscribe again, the initial data
-- copy process will create new ones.
-- ----
delete from sl_table

where tab_set = p_sub_set;
delete from sl_sequence

where seq_set = p_sub_set;

-- ----
-- Call the internal procedure to drop the subscription
-- ----
perform unsubscribeSet_int(p_sub_set, p_sub_receiver);

-- Rewrite sl_listen table
perform RebuildListenEntries();

-- ----
-- Create the UNSUBSCRIBE_SET event
-- ----
return createEvent(’_schemadoc’, ’UNSUBSCRIBE_SET’,

p_sub_set::text, p_sub_receiver::text);
end;

13.143 unsubscribeset_int(p_sub_receiver integer, p_sub_set integer)

Function Properties
Language: PLPGSQL, Return Type: integer

unsubscribeSet_int (sub_set, sub_receiver) All the REAL work of removing the subscriber is done before the event is generated,
so this function just has to drop the references to the subscription in sl_subscribe.

begin
-- ----
-- All the real work is done before event generation on the
-- subscriber.
-- ----
delete from sl_subscribe

Slony-I 2.1.4 Documentation 260 / 263

where sub_set = p_sub_set
and sub_receiver = p_sub_receiver;

-- Rewrite sl_listen table
perform RebuildListenEntries();

return p_sub_set;
end;

13.144 updaterelname(p_only_on_node integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: integer

updateRelname(set_id, only_on_node)

declare
v_no_id int4;
v_set_origin int4;

begin
-- ----
-- Grab the central configuration lock
-- ----
lock table sl_config_lock;

-- ----
-- Check that we either are the set origin or a current
-- subscriber of the set.
-- ----
v_no_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_origin <> v_no_id

and not exists (select 1 from sl_subscribe
where sub_set = p_set_id
and sub_receiver = v_no_id)

then
return 0;

end if;

-- ----
-- If execution on only one node is requested, check that
-- we are that node.
-- ----
if p_only_on_node > 0 and p_only_on_node <> v_no_id then

return 0;
end if;
update sl_table set

tab_relname = PGC.relname, tab_nspname = PGN.nspname
from pg_catalog.pg_class PGC, pg_catalog.pg_namespace PGN
where sl_table.tab_reloid = PGC.oid

and PGC.relnamespace = PGN.oid;
update sl_sequence set

seq_relname = PGC.relname, seq_nspname = PGN.nspname
from pg_catalog.pg_class PGC, pg_catalog.pg_namespace PGN

Slony-I 2.1.4 Documentation 261 / 263

where sl_sequence.seq_reloid = PGC.oid
and PGC.relnamespace = PGN.oid;

return p_set_id;
end;

13.145 updatereloid(p_only_on_node integer, p_set_id integer)

Function Properties
Language: PLPGSQL, Return Type: bigint

updateReloid(set_id, only_on_node) Updates the respective reloids in sl_table and sl_seqeunce based on their respective FQN

declare
v_no_id int4;
v_set_origin int4;

prec record;
begin

-- ----
-- Check that we either are the set origin or a current
-- subscriber of the set.
-- ----
v_no_id := getLocalNodeId(’_schemadoc’);
select set_origin into v_set_origin

from sl_set
where set_id = p_set_id
for update;

if not found then
raise exception ’Slony-I: set % not found’, p_set_id;

end if;
if v_set_origin <> v_no_id

and not exists (select 1 from sl_subscribe
where sub_set = p_set_id
and sub_receiver = v_no_id)

then
return 0;

end if;

-- ----
-- If execution on only one node is requested, check that
-- we are that node.
-- ----
if p_only_on_node > 0 and p_only_on_node <> v_no_id then

return 0;
end if;

-- Update OIDs for tables to values pulled from non-table objects in pg_class
-- This ensures that we won’t have collisions when repairing the oids
for prec in select tab_id from sl_table loop
update sl_table set tab_reloid = (select oid from pg_class pc where relkind <> ’r’ and ←↩

not exists (select 1 from sl_table t2 where t2.tab_reloid = pc.oid) limit 1)
where tab_id = prec.tab_id;

end loop;

for prec in select tab_id, tab_relname, tab_nspname from sl_table loop
update sl_table set

tab_reloid = (select PGC.oid
from pg_catalog.pg_class PGC, pg_catalog.pg_namespace PGN
where slon_quote_brute(PGC.relname) = slon_quote_brute(prec.tab_relname)

and PGC.relnamespace = PGN.oid
and slon_quote_brute(PGN.nspname) = slon_quote_brute(prec.tab_nspname))

Slony-I 2.1.4 Documentation 262 / 263

where tab_id = prec.tab_id;
end loop;

for prec in select seq_id from sl_sequence loop
update sl_sequence set seq_reloid = (select oid from pg_class pc where relkind <> ’S’ ←↩

and not exists (select 1 from sl_sequence t2 where t2.seq_reloid = pc.oid) limit 1)
where seq_id = prec.seq_id;

end loop;

for prec in select seq_id, seq_relname, seq_nspname from sl_sequence loop
update sl_sequence set

seq_reloid = (select PGC.oid
from pg_catalog.pg_class PGC, pg_catalog.pg_namespace PGN
where slon_quote_brute(PGC.relname) = slon_quote_brute(prec.seq_relname)
and PGC.relnamespace = PGN.oid

and slon_quote_brute(PGN.nspname) = slon_quote_brute(prec.seq_nspname))
where seq_id = prec.seq_id;

end loop;

return 1;
end;

13.146 upgradeschema(p_old text)

Function Properties
Language: PLPGSQL, Return Type: text

Called during "update functions" by slonik to perform schema changes

declare
v_tab_row record;
v_query text;
v_keepstatus text;

begin
-- If old version is pre-2.0, then we require a special upgrade process
if p_old like ’1.%’ then
raise exception ’Upgrading to Slony-I 2.x requires running slony_upgrade_20’;

end if;

perform upgradeSchemaAddTruncateTriggers();

-- Change all Slony-I-defined columns that are "timestamp without time zone" to " ←↩
timestamp *WITH* time zone"

if exists (select 1 from information_schema.columns c
where table_schema = ’_schemadoc’ and data_type = ’timestamp without time zone’

and exists (select 1 from information_schema.tables t where t.table_schema = c. ←↩
table_schema and t.table_name = c.table_name and t.table_type = ’BASE TABLE’)

and (c.table_name, c.column_name) in ((’sl_confirm’, ’con_timestamp’), (’sl_event’, ’ ←↩
ev_timestamp’), (’sl_registry’, ’reg_timestamp’),(’sl_archive_counter’, ’ ←↩
ac_timestamp’)))

then

-- Preserve sl_status
select pg_get_viewdef(’sl_status’) into v_keepstatus;
execute ’drop view sl_status’;
for v_tab_row in select table_schema, table_name, column_name from information_schema. ←↩

columns c
where table_schema = ’_schemadoc’ and data_type = ’timestamp without time zone’

and exists (select 1 from information_schema.tables t where t.table_schema = c. ←↩
table_schema and t.table_name = c.table_name and t.table_type = ’BASE TABLE’)

Slony-I 2.1.4 Documentation 263 / 263

and (table_name, column_name) in ((’sl_confirm’, ’con_timestamp’), (’sl_event’, ’ ←↩
ev_timestamp’), (’sl_registry’, ’reg_timestamp’),(’sl_archive_counter’, ’ ←↩
ac_timestamp’))

loop
raise notice ’Changing Slony-I column [%.%] to timestamp WITH time zone’, v_tab_row. ←↩

table_name, v_tab_row.column_name;
v_query := ’alter table ’ || slon_quote_brute(v_tab_row.table_schema) ||

’.’ || v_tab_row.table_name || ’ alter column ’ || v_tab_row.column_name ←↩
||

’ type timestamp with time zone;’;
execute v_query;
end loop;
-- restore sl_status
execute ’create view sl_status as ’ || v_keepstatus;

end if;

if not exists (select 1 from information_schema.tables where table_schema = ’_schemadoc’ ←↩
and table_name = ’sl_components’) then
v_query := ’

create table sl_components (
co_actor text not null primary key,
co_pid integer not null,
co_node integer not null,
co_connection_pid integer not null,
co_activity text,
co_starttime timestamptz not null,
co_event bigint,
co_eventtype text

) without oids;
’;

execute v_query;
end if;
if not exists (select 1 from information_schema.tables t where table_schema = ’_schemadoc ←↩

’ and table_name = ’sl_event_lock’) then
v_query := ’create table sl_event_lock (dummy integer);’;
execute v_query;

end if;
return p_old;

end;

	Preface
	Introduction to Slony-I
	What Is Slony-I
	About This Book

	System Requirements
	Requirements for compiling Slony-I
	 Getting Slony-I Source

	Slony-I Concepts
	Cluster
	Node
	 Replication Set
	 Origin, Providers and Subscribers
	slon Daemon
	slonik Configuration Processor
	 Slony-I Path Communications
	SSH tunnelling

	 Current Limitations

	Tutorial
	Replicating Your First Database
	Creating the pgbench User
	Preparing the Databases
	Configuring the Database For Replication.
	Using slonik Command Directly
	Using the altperl Scripts

	Starting & Stopping Replication
	Deploying Slon Processes
	Starting Slon On Unix Systems
	Invoking slon Directly
	start_slon.sh

	Stopping Slon On a Unix System
	Starting Slon On a MS-Windows System
	Stopping slon On MS-Windows

	Administration Tasks
	Slony-I Building & Installation
	Short Version
	Configuration
	Example
	Build
	 Installing Slony-I Once Built;
	Building on Win32
	 Building Documentation: Admin Guide
	 Installing Slony-I from RPMs
	 Installing the Slony-I service on Windows™

	Modifying Things in a Replication Cluster
	Adding a Table To Replication
	 How To Add Columns To a Replicated Table
	 How to remove replication for a node
	Adding a Replication Node
	Adding a Cascaded Replica
	 How do I use Log Shipping?
	 How To Remove Replication For a Node
	Changing a Nodes Provider
	Moving The Master From One Node To Another

	Database Schema Changes (DDL)
	DDL Changes with Execute Script
	Applying DDL Changes Directly

	Doing switchover and failover with Slony-I
	Foreword
	 Controlled Switchover
	 Failover
	 Failover With Complex Node Set
	 Automating FAIL OVER
	After Failover, Reconfiguring Former Origin
	Planning for Failover

	Advanced Concepts
	Events & Confirmations
	SYNC Events
	Event Confirmations
	Event cleanup
	Slonik and Event Confirmations

	Slony-I Listen Paths
	How Listening Can Break
	How the Listen Configuration Should Look
	Automated Listen Path Generation

	Slony-I Trigger Handling
	TRUNCATE in PostgreSQL 8.4+

	Locking Issues
	Log Shipping - Slony-I with Files
	 Usage Hints
	 find-triggers-to-deactivate.sh
	 slony_logshipper Tool

	Deployment Considerations
	Cluster Monitoring
	 test_slony_state
	 Nagios Replication Checks
	 Monitoring Slony-I using MRTG
	Bucardo-related Monitoring
	 search-logs.sh
	 Building MediaWiki Cluster Summary
	 Analysis of a SYNC

	Component Monitoring
	 Looking at pg_stat_activity view
	 Looking at sl_components view
	Notes On Interpreting Component Activity

	Partitioning Support
	 Support for Dynamic Partition Addition

	 Slony-I Upgrade
	Incompatibilties between 2.0 and 2.1
	Automatic Wait For
	SNMP Support

	Incompatibilities between 1.2 and 2.0
	 TABLE ADD KEY issue in Slony-I 2.0
	 New Trigger Handling in Slony-I Version 2
	SUBSCRIBE SET goes to the origin
	WAIT FOR EVENT requires WAIT ON

	 Upgrading to Slony-I version 2.1 from version 2.0
	 Upgrading to Slony-I version 2.1 from version 1.2 or earlier

	Log Analysis
	CONFIG notices
	INFO notices
	DEBUG Notices
	Thread name
	 How to read Slony-I logs
	 Log Messages and Implications
	 Log Messages Associated with Log Shipping
	 Log Messages - DDL scripts
	 Threading Issues
	 Log Entries At Subscription Time
	 Log Entries Associated with MERGE SET
	 Log Entries Associated With Normal SYNC activity
	 Log Entries - Adding Objects to Sets
	 Logging When Moving Objects Between Sets
	 Issues with Dropping Objects
	 Issues with MOVE SET, FAILOVER, DROP NODE
	 Log Switching
	 Miscellanea

	Performance Considerations
	Vacuum Concerns
	Log Switching
	Long Running Transactions

	Security Considerations
	Minimum Privileges
	 Lowering Authority Usage from Superuser
	Handling Database Authentication (Passwords)
	 Other Good Security Practices

	Additional Utilities
	Slony-I Administration Scripts
	altperl Scripts
	Support for Multiple Clusters
	Set configuration - cluster.set1, cluster.set2
	slonik_build_env
	slonik_print_preamble
	slonik_create_set
	slonik_drop_node
	slonik_drop_set
	slonik_drop_table
	slonik_execute_script
	slonik_failover
	slonik_init_cluster
	slonik_merge_sets
	slonik_move_set
	replication_test
	slonik_restart_node
	slonik_restart_nodes
	slony_show_configuration
	slon_kill
	slon_start
	slon_watchdog
	slon_watchdog2
	slonik_store_node
	slonik_subscribe_set
	slonik_uninstall_nodes
	slonik_unsubscribe_set
	slonik_update_nodes

	mkslonconf.sh
	start_slon.sh
	 launch_clusters.sh
	 slony1_extract_schema.sh
	 slony-cluster-analysis
	 Generating slonik scripts using configure-replication.sh
	Global Values
	Node-Specific Values
	Resulting slonik scripts

	 slon.in-profiles
	 duplicate-node.sh
	slonikconfdump.sh
	Parallel to Watchdog: generate_syncs.sh

	Slony-I Watchdog
	 Watchdogs: Keeping Slons Running

	Testing Slony-I State
	test_slony_state
	Replication Test Scripts
	 Other Replication Tests

	 Log Files
	mkservice
	slon-mkservice.sh
	logrep-mkservice.sh

	 Slony-I Test Suites
	Clustertest Test Framework
	Introduction and Overview
	DISORDER - DIStributed ORDER test
	Configuring DISORDER

	Regression Tests
	Configuring Regression Tests

	 Slony-I Test Bed Framework

	I Reference
	slon
	Run-time Configuration
	Logging
	Connection settings
	 Archive Logging Options
	Event Tuning

	slonik
	Slonik Command Summary
	General outline
	Commands
	Comments
	Command groups

	Slonik Meta Commands
	SLONIK INCLUDE
	SLONIK DEFINE

	Slonik Preamble Commands
	SLONIK CLUSTER NAME
	SLONIK ADMIN CONNINFO

	Configuration and Action commmands
	SLONIK ECHO
	SLONIK DATE
	SLONIK EXIT
	SLONIK INIT CLUSTER
	SLONIK STORE NODE
	SLONIK DROP NODE
	SLONIK UNINSTALL NODE
	SLONIK RESTART NODE
	SLONIK STORE PATH
	SLONIK DROP PATH
	SLONIK STORE LISTEN
	SLONIK DROP LISTEN
	SLONIK TABLE ADD KEY
	SLONIK TABLE DROP KEY
	SLONIK CREATE SET
	SLONIK DROP SET
	SLONIK MERGE SET
	SLONIK SET ADD TABLE
	SLONIK SET ADD SEQUENCE
	SLONIK SET DROP TABLE
	SLONIK SET DROP SEQUENCE
	SLONIK SET MOVE TABLE
	SLONIK SET MOVE SEQUENCE
	SLONIK STORE TRIGGER
	SLONIK DROP TRIGGER
	SLONIK SUBSCRIBE SET
	SLONIK UNSUBSCRIBE SET
	SLONIK LOCK SET
	SLONIK UNLOCK SET
	SLONIK MOVE SET
	SLONIK FAILOVER
	SLONIK EXECUTE SCRIPT
	SLONIK UPDATE FUNCTIONS
	SLONIK WAIT FOR EVENT
	SLONIK REPAIR CONFIG
	SLONIK SYNC
	SLONIK SLEEP
	SLONIK CLONE PREPARE
	SLONIK CLONE FINISH

	Appendix
	Frequently Asked Questions
	 Release Checklist
	Using Slonik
	 Embedding Slonik in Shell Scripts
	More Slony-I Help
	Slony-I Website
	Mailing Lists
	Other Sources

	Schema schemadoc
	 Table: sl_archive_counter
	 Table: sl_components
	 Table: sl_config_lock
	 Table: sl_confirm
	 Table: sl_event
	 Table: sl_event_lock
	 Table: sl_listen
	 Table: sl_log_1
	 Table: sl_log_2
	 Table: sl_node
	 Table: sl_nodelock
	 Table: sl_path
	 Table: sl_registry
	 View: sl_seqlastvalue
	 Table: sl_seqlog
	 Table: sl_sequence
	 Table: sl_set
	 Table: sl_setsync
	 Table: sl_subscribe
	 Table: sl_table
	 add_empty_table_to_replication(p_comment integer, p_idxname integer, p_tabname text, p_nspname text, p_tab_id text, p_set_id text)
	 add_missing_table_field(p_type text, p_field text, p_table text, p_namespace text)
	 addpartiallogindices()
	 altertableaddtriggers(p_tab_id integer)
	 altertableconfiguretriggers(p_tab_id integer)
	 altertabledroptriggers(p_tab_id integer)
	 checkmoduleversion()
	 cleanupevent(p_interval interval)
	 cleanupnodelock()
	 clonenodefinish(p_no_provider integer, p_no_id integer)
	 clonenodeprepare(p_no_comment integer, p_no_provider integer, p_no_id text)
	 clonenodeprepare_int(p_no_comment integer, p_no_provider integer, p_no_id text)
	 component_state(i_eventtype text, i_event integer, i_starttime integer, i_activity integer, i_conn_pid text, i_node timestamp with time zone, i_pid bigint, i_actor text)
	 copyfields(p_tab_id integer)
	 createevent(ev_data1 name, p_event_type text, p_cluster_name text)
	 createevent(ev_data2 name, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data3 name, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data4 name, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data5 name, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data6 name, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data7 name, ev_data6 text, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(ev_data8 name, ev_data7 text, ev_data6 text, ev_data5 text, ev_data4 text, ev_data3 text, ev_data2 text, ev_data1 text, p_event_type text, p_cluster_name text)
	 createevent(p_event_type name, p_cluster_name text)
	 ddlscript_complete(p_only_on_node integer, p_script text, p_set_id integer)
	 ddlscript_complete_int(p_only_on_node integer, p_set_id integer)
	 ddlscript_prepare(p_only_on_node integer, p_set_id integer)
	 ddlscript_prepare_int(p_only_on_node integer, p_set_id integer)
	 decode_tgargs(bytea)
	 deny_truncate()
	 denyaccess()
	 determineattkindunique(p_idx_name text, p_tab_fqname name)
	 determineidxnameunique(p_idx_name text, p_tab_fqname name)
	 disable_indexes_on_table(i_oid oid)
	 disablenode(p_no_id integer)
	 disablenode_int(p_no_id integer)
	 droplisten(p_li_receiver integer, p_li_provider integer, p_li_origin integer)
	 droplisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin integer)
	 dropnode(p_no_id integer)
	 dropnode_int(p_no_id integer)
	 droppath(p_pa_client integer, p_pa_server integer)
	 droppath_int(p_pa_client integer, p_pa_server integer)
	 dropset(p_set_id integer)
	 dropset_int(p_set_id integer)
	 enable_indexes_on_table(i_oid oid)
	 enablenode(p_no_id integer)
	 enablenode_int(p_no_id integer)
	 enablesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer)
	 enablesubscription_int(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer)
	 failednode(p_backup_node integer, p_failed_node integer)
	 failednode2(p_ev_seqfake integer, p_ev_seqno integer, p_set_id integer, p_backup_node bigint, p_failed_node bigint)
	 failoverset_int(p_wait_seqno integer, p_set_id integer, p_backup_node integer, p_failed_node bigint)
	 finishtableaftercopy(p_tab_id integer)
	 forwardconfirm(p_con_timestamp integer, p_con_seqno integer, p_con_received bigint, p_con_origin timestamp without time zone)
	 generate_sync_event(p_interval interval)
	 getlocalnodeid(p_cluster name)
	 getmoduleversion()
	 initializelocalnode(p_comment integer, p_local_node_id text)
	 is_node_reachable(receiver_node_id integer, origin_node_id integer)
	 issubscriptioninprogress(p_add_id integer)
	 killbackend(p_signame integer, p_pid text)
	 lockedset()
	 lockset(p_set_id integer)
	 log_truncate()
	 logswitch_finish()
	 logswitch_start()
	 logtrigger()
	 mergeset(p_add_id integer, p_set_id integer)
	 mergeset_int(p_add_id integer, p_set_id integer)
	 moveset(p_new_origin integer, p_set_id integer)
	 moveset_int(p_wait_seqno integer, p_new_origin integer, p_old_origin integer, p_set_id bigint)
	 preparetableforcopy(p_tab_id integer)
	 rebuildlistenentries()
	 recreate_log_trigger(p_tab_attkind text, p_tab_id oid, p_fq_table_name text)
	 registernodeconnection(p_nodeid integer)
	 registry_get_int4(p_default text, p_key integer)
	 registry_get_text(p_default text, p_key text)
	 registry_get_timestamp(p_default text, p_key timestamp with time zone)
	 registry_set_int4(p_value text, p_key integer)
	 registry_set_text(p_value text, p_key text)
	 registry_set_timestamp(p_value text, p_key timestamp with time zone)
	 repair_log_triggers(only_locked boolean)
	 replicate_partition(p_comment integer, p_idxname text, p_tabname text, p_nspname text, p_tab_id text)
	 resetsession()
	 reshapesubscription(p_sub_receiver integer, p_sub_provider integer, p_sub_set integer)
	 seqtrack(p_seqval integer, p_seqid bigint)
	 sequencelastvalue(p_seqname text)
	 sequencesetvalue(p_last_value integer, p_ev_seqno integer, p_seq_origin bigint, p_seq_id bigint)
	 setaddsequence(p_seq_comment integer, p_fqname integer, p_seq_id text, p_set_id text)
	 setaddsequence_int(p_seq_comment integer, p_fqname integer, p_seq_id text, p_set_id text)
	 setaddtable(p_tab_comment integer, p_tab_idxname integer, p_fqname text, p_tab_id name, p_set_id text)
	 setaddtable_int(p_tab_comment integer, p_tab_idxname integer, p_fqname text, p_tab_id name, p_set_id text)
	 setdropsequence(p_seq_id integer)
	 setdropsequence_int(p_seq_id integer)
	 setdroptable(p_tab_id integer)
	 setdroptable_int(p_tab_id integer)
	 setmovesequence(p_new_set_id integer, p_seq_id integer)
	 setmovesequence_int(p_new_set_id integer, p_seq_id integer)
	 setmovetable(p_new_set_id integer, p_tab_id integer)
	 setmovetable_int(p_new_set_id integer, p_tab_id integer)
	 slon_node_health_check()
	 slon_quote_brute(p_tab_fqname text)
	 slon_quote_input(p_tab_fqname text)
	 slonyversion()
	 slonyversionmajor()
	 slonyversionminor()
	 slonyversionpatchlevel()
	 store_application_name(i_name text)
	 storelisten(p_receiver integer, p_provider integer, p_origin integer)
	 storelisten_int(p_li_receiver integer, p_li_provider integer, p_li_origin integer)
	 storenode(p_no_comment integer, p_no_id text)
	 storenode_int(p_no_comment integer, p_no_id text)
	 storepath(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text, p_pa_server integer)
	 storepath_int(p_pa_connretry integer, p_pa_conninfo integer, p_pa_client text, p_pa_server integer)
	 storeset(p_set_comment integer, p_set_id text)
	 storeset_int(p_set_comment integer, p_set_origin integer, p_set_id text)
	 subscribeset(p_omit_copy integer, p_sub_forward integer, p_sub_receiver integer, p_sub_provider boolean, p_sub_set boolean)
	 subscribeset_int(p_omit_copy integer, p_sub_forward integer, p_sub_receiver integer, p_sub_provider boolean, p_sub_set boolean)
	 tablestovacuum()
	 terminatenodeconnections(p_failed_node integer)
	 uninstallnode()
	 unlockset(p_set_id integer)
	 unsubscribeset(p_sub_receiver integer, p_sub_set integer)
	 unsubscribeset_int(p_sub_receiver integer, p_sub_set integer)
	 updaterelname(p_only_on_node integer, p_set_id integer)
	 updatereloid(p_only_on_node integer, p_set_id integer)
	 upgradeschema(p_old text)

